10-th Korean Mathematical Olympiad 1996/97

First Round – November 10, 1996

- 1. Show that among any four points in a unit circle, there exist two whose distance is at most $\sqrt{2}$.
- 2. Suppose $f: \mathbb{N} \to \mathbb{N}$ is a function satisfying:
 - (i) f(n+f(n)) = f(n) for all n;
 - (ii) For some $n_0 \in \mathbb{N}$, $f(n_0) = 1$.

Prove that f(n) = 1 for all $n \in \mathbb{N}$.

- 3. Express $\sum_{k=1}^{n} [\sqrt{k}]$ in terms of n and $a = [\sqrt{n}]$.
- 4. A circle C touches the edges of an angle XOY, and a circle C_1 touches these edges and passes through the center of C. Let A be the second endpoint of the diameter of C_1 containing the center of C, and let B be the second intersection point of this diameter with C. Prove that the circle centered at A passing through B touches the edges of $\angle XOY$.
- 5. Find all integers x, y, z satisfying $x^2 + y^2 + z^2 = 2xyz$.
- 6. Find the smallest integer k for which there exist two sequences (a_i) and (b_i) , i = 1, 2, ..., k, such that:
 - (i) $a_i, b_i \in \{1, 1996, 1996^2, \dots\}$ for all i;
 - (ii) $a_i \neq b_i$ for all i;
 - (iii) $a_i \le a_{i+1}$ and $b_i \le b_{i+1}$ for i = 1, ..., k-1;
 - (iv) $\sum_{i=1}^{k} a_i = \sum_{i=1}^{k} b_i$.
- 7. Let A_n be the set of all real nhumbers of the form

$$1 + \frac{a_1}{\sqrt{2}} + \frac{a_2}{(\sqrt{2})^2} + \dots + \frac{a_n}{(\sqrt{2})^n}, \quad a_j \in \{-1, 1\}.$$

Find the number of elements of A_n , and find the sum of all products of two distinct elements of A_n .

8. In an acute triangle ABC with $AB \neq AC$, let V be the intersection of the angle bisector of A with BC, and let D be the foot of the altitude from A. If the circumcircle of $\triangle AVD$ meets CA again at E and AB at F, show that the lines AD, BE, CF concur.

