Japanese Mathematical Olympiad 1996

Final Round – February 11

- 1. A plane is partitioned into triangles. Let \mathscr{T}_0 denote the set of vertices of triangles in the partition. Let ABC be a triangle with $A,B,C \in \mathscr{T}_0$ and θ be its smallest angle. Assume that no point of \mathscr{T}_0 lies inside the circumcircle of $\triangle ABC$. Prove that there exists a triangle σ in the partition such that its intersection with $\triangle ABC$ is nonempty and whose every angle is greater than θ .
 - *Remark*. This problem is clearly wrong. We have it here so someone could potentially recognize the problem and tell us the correct one.
- 2. Let m, n be positive integers with (m, n) = 1. Find $(5^m + 7^m, 5^n + 7^n)$.
- 3. Let x > 1 be a real number which is not an integer. For each $n \in \mathbb{N}$, let $a_n = \lfloor x^{n+1} \rfloor x \lfloor x^n \rfloor$. Prove that the sequence (a_n) is not periodic.
- 4. Let θ be the maximum of the six angles between six edges of a regular tetrahedron in space and a fixed plane. When the tetrahedron is rotated in space, find the maximum of θ .
- 5. Let q be a real number with $\frac{1+\sqrt{5}}{2} < q < 2$. If a positive integer n is represented in binary system as $n = 2^k + 2^{k-1}a_{k-1} + \cdots + 2a_1 + a_0$, where $a_i \in \{0,1\}$, define

$$p_n = q^k + q^{k-1}a_{k-1} + \dots + qa_1 + a_0.$$

Prove that there exist infinitely many positive integers m with the property that there is no $l \in \mathbb{N}$ such that $p_{2m} < p_l < p_{2m+1}$.

