Japanese Mathematical Olympiad 1994

Final Round – February

- 1. For any positive integer n, let a_n denote the closest integer to \sqrt{n} , and let $b_n = n + a_n$. Determine the increasing sequence (c_n) of positive integers which do not occur in the sequence (b_n) .
- 2. Five points, no three collinear, are given on the plane. Let $l_1, l_2, ..., l_{10}$ be the lengths of the ten segments joining any two of the given points. Prove that if $l_1^2, ..., l_9^2$ are rational numbers, then l_{10}^2 is also a rational number.
- 3. Let P_0 be a point in the plane of triangle $A_0A_1A_2$. Define P_i (i = 1, ..., 6) inductively as the point symmetric to P_{i-1} with respect to A_k , where k is the remainder when i is divided by 3.
 - (a) Prove that $P_6 \equiv P_0$.
 - (b) Find the locus of points P_0 for which P_iP_{i+1} does not meet the interior of $\triangle A_0A_1A_2$ for $0 \le i \le 5$.
- 4. In a triangle *ABC*, *M* is the midpoint of *BC*. Given that $\angle MAC = 15^{\circ}$, find the maximum value of $\angle ABC$.
- 5. In a deck of *N* cards, the cards are denoted by 1 to *N*. These cards are dealt to *N* people twice. A person *X* wins a prize if there is no person *Y* who got a card with a smaller number than *X* both times. Determine the expected number of prize winners.

