1-st Japanese Mathematical Olympiad 1991

Final Round – February 15

- 1. Let P,Q and R be points on the sides BC,CA and AB of a triangle ABC respectively, such that $\overrightarrow{BP}:\overrightarrow{PC}=\overrightarrow{CQ}:\overrightarrow{QA}=\overrightarrow{AR}:\overrightarrow{RB}=t:(1-t)$ for some real number t. Prove that there is a triangle Δ whose side lengths are AP,BQ,CR, and find the ratio of the area of triengle ABC to that of Δ in terms of t.
- 2. Let p and q be mappings from \mathbb{N} to itself given by

$$p(1) = 2$$
, $p(2) = 3$, $p(3) = 4$, $p(4) = 1$, $p(n) = n$ for $n \ge 5$; $q(1) = 3$, $q(2) = 4$, $q(3) = 2$, $q(4) = 1$, $q(n) = n$ for $n \ge 5$.

- (a) Find a mapping $f: \mathbb{N} \to \mathbb{N}$ such that f(f(n)) = p(n) + 2 for $n \ge 1$.
- (b) Prove that there is no mapping $g: \mathbb{N} \to \mathbb{N}$ such that g(g(n)) = q(n) + 2 for n > 1.
- 3. Let *A* be a positive 16-digit integer. Show that we can find some consecutive digits of *A* whose product is a perfect square.
- 4. Let be given a 10×14 matrix (a_{ij}) with each a_{ij} being equal to 0 or 1, such that each column or row contains an odd number of ones. Prove that among the a_{ij} with an even i + j there are an even number of ones.
- 5. A set *S* of distinct $n \ge 2$ points is given on a plane. Show that there are two distinct points $P_i, P_j \in S$ such that the circle with diameter $P_i P_j$ contains at least $\lfloor n/3 \rfloor$ of the points from *S*.

