Japanese IMO Team Selection Test 1990

Final Round – February 11

- 1. Nonempty subsets A_1, A_2, A_3, A_4 and A_5 of \mathbb{R}^3 are such that:
 - (i) $A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 = \mathbb{R}^3$;
 - (ii) $A_i \cap A_j = \emptyset$ for $i \neq j$.

Prove that there exists a plane which intersects at least four of the A_i 's.

- 2. Let $1 \le a_0 < a_1 < \dots < a_n \le 2n-3$ be integers, where $n \ge 3$ is an integer. Prove that there exist different indices i, j, k, l, m such that $a_i + a_j = a_k + a_l = a_m$.
- 3. A nonempty set *X* of positive integers has the property that, for any $x \in X$, numbers 4x and $[\sqrt{x}]$ are also in *X*. Prove that $X = \mathbb{N}$.
- 4. Let n > 2 be an integer. Find the maximum K and the minimum G such that for any positive numbers a_1, a_2, \ldots, a_n the following inequality holds:

$$K < \frac{a_1}{a_1 + a_2} + \frac{a_2}{a_2 + a_3} + \dots + \frac{a_n}{a_n + a_1} < G.$$

5. Consider the set Q(n) of all words of size 2n consisting of n letters A and n letters B which have the following property: For any $k \le 2n$, among the first k letters of the word there are at least as many letters B as there are letters A. Determine the cardinalities of (a) Q(8) and (b) Q(n) for any n.

