Japanese Mathematical Olympiad 2000

Final Round

1. Consider the point®(0,0) andA(0,1/2) on the coordinate plane. Prove that
there is no finite sequence of rational poiRtsP;, . .., P, in the plane such that

OP =PP=-=P_1Ph=RA=1

2. Let 3 cards, denoted by distinct letteas, ay, . ..,asn, be put in line in this
order from left to right. After each shuffle, the sequelgeay, ..., as, is re-
placed by the sequen@,as,...,asn,82,8s,...,83n-1,81,84,-.., a3n_2. IS it
possible to replace the sequence of cards.1.,192 by the reverse sequence
192191 ...,1 by afinite number of shuffles?

3. Given five pointsA, B,C,P,Q in a plane, no three of which are collinear, prove
the inequality

AB+ BC+CA+PQ < AP+ AQ+ BP+BQ+CP+CQ.

4. Prove that for every natural numbethere exists a sé, with the following two
properties:

(i) An consists oh distinct natural numbers;

(i) for any a € A,, the remainder of the product of all elementsfef\ {a}
divided byaiis 1.

5. Finitely many lines are given in a plane. We caliatersection point a point that
belongs to at least two of the given lines, andoad intersection point a point
that belongs to exactly two lines. Assuming there are at lwas intersection
points, find the minimum number of good intersection points.
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