Joseph Gillis Mathematical Olympiad 1996

- 1. Let a be a prime number and n > 2 an integer. Find all integer solutions of the equation $x^n + ay^n = a^2z^n$.
- 2. Find all polynomials P(x) satisfying P(x+1) 2P(x) + P(x-1) = x for all x.
- 3. The angles of an acute triangle ABC at α, β, γ . Let AD be a height, CF a median, and BE the bisector of $\angle B$. Show that AD, CF and BE are concurrent if and only if $\cos \gamma \tan \beta = \sin \alpha$.
- 4. Eight guests arrive to a hotel with four rooms. Each guest dislikes at most three other guests and doesn't want to share a room with any of them (this feeling is mutual). Show that the guests can reside in the four rooms, with two persons in each room.
- 5. Suppose that the circumradius R and the inradius r of a triangle ABC satisfy R = 2r. Prove that the triangle is equilateral.
- 6. Let x, y, z be real numbers with |x|, |y|, |z| > 2. What is the smallest possible value of |xyz + 2(x+y+z)|?
- 7. Find all positive integers a, b, c such that

$$a^2 = 4(b+c)$$
 and $a^3 - 2b^3 - 4c^3 = \frac{1}{2}abc$.

- 8. Consider the function $f : \mathbb{N} \to \mathbb{N}$ given by
 - (i) f(1) = 1,
 - (ii) f(2n) = f(n) for any $n \in \mathbb{N}$,
 - (iii) f(2n+1) = f(2n) + 1 for any $n \in \mathbb{N}$.
 - (a) Find the maximum value of f(n) for $1 \le n \le 1995$;
 - (b) Find all values of f on this interval.

