Grosman Memorial Mathematical Olympiad 1999

1. For any 16 positive integers $n, a_1, a_2, \dots, a_{15}$ we define

$$T(n, a_1, a_2, \dots, a_{15}) = (a_1^n + a_2^n + \dots + a_{15}^n)a_1a_2 \dots a_{15}.$$

Find the smallest n such that $T(n, a_1, \ldots, a_{15})$ is divisible by 15 for any choice of a_1, \ldots, a_{15} .

- 2. Find the smallest positive integer *n* for which $0 < \sqrt[4]{n} [\sqrt[4]{n}] < 10^{-5}$.
- 3. For every triangle *ABC*, denote by $\mathscr{D}(ABC)$ the triangle whose vertices are the tangency points of the incircle of $\triangle ABC$ with the sides. Assume that $\triangle ABC$ is not equilateral.
 - (a) Prove that $\mathcal{D}(ABC)$ is also not equilateral.
 - (b) Find in the sequence $T_1 = \triangle ABC$, $T_{k+1} = \mathcal{D}(T_k)$ for $k \in \mathbb{N}$ a triangle whose largest angle α satisfies $0 < \alpha 60^\circ < 0.0001^\circ$.
- 4. Consider a polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ with integer coefficients. Prove that if f(x) has exactly one real root, then it can be factored into nonconstant polynomials with rational coefficients.
- An infinite sequence of distinct real numbers is given. Prove that it contains a subsequence of 1999 terms which is either monotonically increasing or monotonically decreasing.
- 6. Let *A*,*B*,*C*,*D*,*E*,*F* be points in space such that the quadrilaterals *ABDE*, *BCEF*, *CDFA* are parallelograms. Prove that the six midpoints of the sides *AB*,*BC*,*CD*,*DE*,*EF*,*FA* are coplanar.

