19-th Iranian Mathematical Olympiad 2001/02

Third Round

- 1. Find all real polynomials P(x) such that $P(a) \in \mathbb{Z}$ implies that $a \in \mathbb{Z}$.
- 2. Let B_1 be an arbitrary point outside a fixed ellipse \mathcal{E} . If a tangent from B_1 to \mathcal{E} touches E at point C_1 , denote by B_2 the point symmetric to B_1 with respect to C_1 . For each integer $i \geq 2$, define B_{i+1} in terms of B_i in this manner so that $b_{i+1} \neq B_{i-1}$. Prove that the sequence (B_i) is bounded in the plane.
- 3. In a triangle ABC, define C_a to be the circle tangent to sides AB and AC and internally to the circumcircle of $\triangle ABC$, and denote by r_a the radius of C_a . Define r_b and r_c analogously. If r is the inradius of $\triangle ABC$, prove that

$$r_a + r_b + r_c \ge 4r.$$

- 4. Let n and k be integers with $2 \le k \le n$. Let \mathcal{F} be a subset of $\mathbb{P}(\{1,\ldots,n\})$ with the property that, for every $F,G\in\mathcal{F}$, there exists an integer t with $1 \le t \le n$ such that $\{t,t+1,\ldots,t+k-1\}\subseteq F\cap G$. Prove that $|\mathcal{F}|\le 2^{n-k}$.
- 5. For every real number x define $\langle x \rangle = \min\{\{x\}, 1 \{x\}\}$, where $\{x\}$ denotes the fractional part of x. Prove that, for every irrational number α and every positive real number ε , there exists a positive integer n such that $\langle n^2 \alpha \rangle < \varepsilon$.

