21-st Iranian Mathematical Olympiad 2003/04

Second Round

Time: 4.5 hours each day.

First Day

- 1. Let P and Q be points on the sides BC and DC respectively of a convex quadrilateral ABCD such that $\angle BAP = \angle DAQ$. Prove that the areas of triangles ABP and ADQ are equal if and only if the line through the orthocenters of these triangles is perpendicular to AC.
- 2. Let f_1, f_2, \ldots, f_n be polynomials with integer coefficients. Show that there exists a reducible (in $\mathbb{Z}[x]$) polynomial g(x) with integer coefficients such that $f_i(x) + g(x)$ is irreducible for $i = 1, \ldots, n$
- 3. Let X be a set of n elements and $0 \le k \le n$ be an integer. We denote by $a_{n,k}$ $(b_{n,k})$ the maximum possible number of permutations of X every two of which match in at least (resp. at most) k positions.
 - (a) Show that $a_{n,k}b_{n,k-1} \leq n!$.
 - (b) For a prime number p find the exact value of $a_{p,2}$.

Second Day

- 4. Does there exist an infinite set $S \in \mathbb{N}$ such that for any $a, b \in S$, $a^2 ab + b^2$ divides $(ab)^2$.
- 5. A light-point is placed in space. Is it possible to block the light with a finite number of disjoint spheres of the same size?
- 6. The sides of a given *n*-gon \mathcal{P} are numbered by 1 through *n*. For a sequence $S = (s_1, s_2, s_3, \ldots)$ with $s_i \in \{1, \ldots, n\}$, polygon \mathcal{P} moves around the plane as follows: In the *i*-th step, it reflects in its side numbered by s_i .
 - (a) Show that there is an infinite sequence S such that by moving \mathcal{P} according to S we can cover every point in the plane at least once.
 - (b) Prove that such a sequence cannot be periodic.
 - (c) If \mathcal{P} is a regular polygon of circumradius 1 and D an arbitrary circle of radius 1.0001 in the plane, does there necessarily exist a finite sequence S that will place \mathcal{P} inside the circle D?

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu