18-th Iranian Mathematical Olympiad 2000/01

Second Round

Time: 4 hours each day.

First Day

1. Prove that every real number α with $1<\alpha<2$ has a unique representation as an infinite product

$$\alpha = \left(1 + \frac{1}{n_1}\right) \left(1 + \frac{1}{n_2}\right) \cdots,$$

where n_i are natural numbers with $n_i^2 \leq n_{i+1}$.

2. Denote $\Delta^3=\{x\in\mathbb{R}^3\mid \|x\|\leq 1\}$ and $\Delta^2=\{x\in\mathbb{R}^2\mid \|x\|\leq R\}$. Does there exist a function $f:\Delta^3\to\Delta^2$ such that

$$||f(A) - f(B)|| \ge ||A - B||$$
 for all $A, B \in \Delta^3$?

3. Let x_1, x_2, \ldots be a random sequence of 0 and 1. Which of the sequences 110 and 010 is more probable to occur first?

Second Day

4. Let x, y, z be positive integers with $xy = z^2 + 1$. Prove that there exist integers a, b, c, d such that

$$x = a^2 + b^2$$
, $y = c^2 + d^2$, $z = ac + bd$.

- 5. Let B and D be points on segments AC and AE respectively, and let CD and BE intersect at F. If AB+BF=AD+DF, prove that AC+CF=AE+EF.
- 6. Suppose that (a_n) is a sequence of positive integers such that for all $m, n \in \mathbb{N}$ we have $\gcd(a_m, a_n) = a_d$, where $d = \gcd(m, n)$. Prove that there exists a sequence (b_n) of positive integers such that

$$a_n = \prod_{d|n} a_d.$$

