First Round

Time: 4 hours each day.

First Day

1. For each m, n > 2 prove that there exists a sequence a_0, \ldots, a_k such that $a_0 = m$, $a_k = n$ and

 $a_i + a_{i+1} | a_i a_{i+1} + 1, \ i = 0, 1, \dots, k-1.$

- 2. Let I_1, \ldots, I_n be *n* closed intervals of \mathbb{R} such that among any *k* of them there are 2 with nonempty intersection. Prove that one can choose k 1 points in \mathbb{R} such that any of the intervals contain at least one of the chosen points.
- 3. Let A, B, C, D be four points in the alphabetical order on a circle Ω . Prove that there are four points M_1, M_2, M_3, M_4 on the circle which form a quadrilateral with perpendicular diagonals, such that for each $i \in \{1, 2, 3, 4\}$

$$\frac{AM_i}{BM_i} = \frac{DM_i}{CM_i}$$

Second Day

4. Fond all polynomials $p(x, y) \in \mathbb{R}[x, y]$ such that

$$\forall x, y \in \mathbb{R} : p(x+y, x-y) = 2p(x, y).$$

- 5. Let C_1 and C_2 be two circles such that the center of C_1 is located on C_2 . If M and N are the intersections of the circles, AB an arbitrary diameter of C_1 , A_1 and B_1 the intersections of AM and BM with C_2 respectively, prove that A_1B_1 is equal to the radius of C_1 .
- 6. We have a stack of n books piled on each other, and labeled by 1, 2, ..., n. In each round we make n moves in the following manner: In the *i*-th move of each turn, we turn over the *i* books at the top, as a single book. After each round we start a new round similar to the previous one. Show that after some moves, we will reach the initial arrangement.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com