18-th Iranian Mathematical Olympiad 2000/01

First Round

Time: 4 hours each day.

First Day

- 1. Let S be a 21-element subset of $\{1, 2, ..., 2046\}$. Prove that there exist distinct numbers $a, b, c \in S$ such that $bc < 2a^2 < 4bc$.
- 2. Let D, E, F be points on the sides Bc, CA, AB respectively of a triangle ABC. Prove that the centroids of triangles ABC and DEF coincide if and only if BD/DC = CE/EA = AF/FB.
- 3. Prove that it is possible to choose 16 subsets of $M = \{1, 2, ..., 10000\}$ with the following property: For every $a \in M$, one can choose eight of the subsets whose intersection is $\{a\}$.

Second Day

- 4. Find all integers n for which the set $\{1, 2, ..., n\}$ can be written as the disjoint union of subsets A, B, C with equal sums of elements.
- 5. In tetrahedron ABCD, the sum of the angles at each vertex is 180°. Prove that the faces of the tetrahedron are congruent triangles.
- 6. A hyper-number is a sequence $\dots a_3 a_2 a_1$, where each a_i is a decimal digit. In particular, every natural number can be regarded as a hyper-number with $a_i = 0$ for sufficiently large *i*. Hyper-numbers can be added and multiplied in a manner analogous to that for natural numbers.
 - (a) Let A be a hyper-number. Prove that there is a hyper-number B such that A + B = 0.
 - (b) Find all hyper-numbers A for which there is a hyper-number B such that AB = 1.
 - (c) Is it true that AB = 0 implies A = 0 or B = 0? Justify your answer.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu