12-th Irish Mathematical Olympiad 1999

May 8, 1999

Time: 3 hours each part.

Part 1

1. Find all real numbers x which satisfy

$$\frac{x^2}{\left(x+1-\sqrt{x+1}\right)^2} < \frac{x^2+3x+18}{(x+1)^2} \, .$$

- 2. Show that there is a positive number in the Fibonacci sequence which is divisible by 1000.
- 3. If *AD* is the altitude, *BE* the angle bisector, and *CF* the median of a triangle *ABC*, prove that *AD*, *BE*, and *CF* are concurrent if and only if

$$a^{2}(a-c) = (b^{2}-c^{2})(a+c),$$

where a, b, c are the lengths of the sides BC, CA, AB, respectively.

- 4. A 100×100 square floor consisting of 10000 squares is to be tiled by rectangular 1×3 tiles, fitting exactly over three squares of the floor.
 - (a) If a 2×2 square is removed from the center of the floor, prove that the rest of the floor can be tiled with the available tiles.
 - (b) If, instead, a 2×2 square is removed from the corner, prove that such a tiling is not possible.
- 5. The sequence u_n , n = 0, 1, 2, ... is defined by $u_0 = 0$, $u_1 = 1$ and for each $n \ge 1$, u_{n+1} is the smallest positive integer greater than u_n such that $\{u_0, u_1, ..., u_{n+1}\}$ contains no three elements in arithmetic progression. Find u_{100} .

Part 2

6. Solve the system of equations

$$y^{2} = (x+8)(x^{2}+2),$$

$$y^{2} - (8+4x)y + (16+16x-5x^{2}) = 0.$$

- 7. A function $f: \mathbb{N} \to \mathbb{N}$ satisfies
 - (i) f(ab) = f(a)f(b) whenever a and b are coprime;
 - (ii) f(p+q) = f(p) + f(q) for all prime numbers p and q.

Prove that f(2) = 2, f(3) = 3 and f(1999) = 1999.

8. The sum of positive real numbers a,b,c,d is 1. Prove that

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+d} + \frac{d^2}{d+a} \ge \frac{1}{2},$$

with equality if and only if $a = b = c = d = \frac{1}{4}$.

- 9. Find all positive integers *m* with the property that the fourth power of the number of (positive) divisors of *m* equals *m*.
- 10. A convex hexagon ABCDEF satisfies AB = BC, CD = DE, EF = FA and

$$\angle ABC + \angle CDE + \angle EFA = 360^{\circ}$$
.

Prove that the perpendiculars from A, C and E to FB, BD and DF respectively are concurrent.

