10-th Irish Mathematical Olympiad 1997

May 10, 1997

Time: 3 hours each part.

Part 1

- 1. Find all pairs of integers (x,y) satisfying 1 + 1996x + 1998y = xy.
- 2. For a point M inside an equilateral triangle ABC, let D, E, F be the feet of the perpendiculars from M onto BC, CA, AB, respectively. Find the locus of all such points M for which $\angle FDE$ is a right angle.
- 3. Find all polynomials p(x) satisfying the equation

$$(x-16)p(2x) = 16(x-1)p(x)$$
 for all x.

4. Let a,b,c be nonnegative real numbers. Suppose that $a+b+c \ge abc$. Prove that

$$a^2 + b^2 + c^2 > abc.$$

5. Let *S* be the set of odd integers greater than 1. For each $x \in S$, denote by $\delta(x)$ the unique integer satisfying the inequality $2^{\delta(x)} < x < 2^{\delta(x)+1}$. For $a, b \in S$, define

$$a * b = 2^{\delta(a)-1}(b-3) + a.$$

Prove that if $a, b, c \in S$, then

- (a) $a * b \in S$ and
- (b) (a*b)*c = a*(b*c).

Part 2

- 6. Given a positive integer n, denote by $\sigma(n)$ the sum of all positive divisors of n. We say that n is *abundant* if $\sigma(n) > 2n$. (For example, 12 is abuntant since $\sigma(12) = 28 > 2 \cdot 12$.) Let a, b be positive integers and suppose that a is abundant. Prove that ab is abundant.
- 7. A circle Γ is inscribed in a quadrilateral *ABCD*. If

$$\angle A = \angle B = 120^{\circ}$$
, $\angle D = 90^{\circ}$ and $BC = 1$,

find, with proof, the length of AD.

8. Let *A* be a subset of $\{0,1,2,\ldots,1997\}$ containing more than 1000 elements. Prove that either *A* contains a power of 2 (that is, a number of the form 2^k with $k=0,1,2,\ldots$) or there exist two distinct elements $a,b\in A$ such that a+b is a power of 2.

1

- 9. Let S be the set of natural numbers n satisfying the following conditions:
 - (i) *n* has 1000 digits,
 - (ii) all the figits of n are odd, and
 - (iii) any two adjacent digits of n differ by 2.

Determine the number of elements of *S*,

- 10. Let p be an odd prime number and n a natural number. Then n is called p-partitionable if $T = \{1, 2, ..., n\}$ can be partitioned into (disjoint) subsets $T_1, T_2, ..., T_p$ with equal sums of elements. For example, 6 is 3-partitionable since we can take $T_1 = \{1, 6\}, T_2 = \{2, 5\}$ and $T_3 = \{3, 4\}$.
 - (a) Suppose that n is p-partitionable. Prove that p divides n or n + 1.
 - (b) Suppose that n is divisible by 2p. Prove that n is p-partitionable.

