6-th Irish Mathematical Olympiad 1993

May 8, 1993

Time: 3 hours each part.

Part 1

1. The real numbers α and β satisfy the equations

$$\alpha^3 - 3\alpha^2 + 5\alpha - 17 = 0,$$

 $\beta^3 - 3\beta^2 + 5\beta + 11 = 0.$

Compute $\alpha + \beta$.

- 2. A positive integer n is called good if it can be uniquely written simultaneously as $a_1 + a_2 + \cdots + a_k$ and as $a_1 a_2 \cdots a_k$, where a_i are positive integers and $k \ge 2$. (For example, 10 is good because $10 = 5 + 2 + 1 + 1 + 1 = 5 \cdot 2 \cdot 1 \cdot 1 \cdot 1$ is a unique expression of this form). Find, in terms of prime numbers, all good natural numbers.
- 3. A line *l* is tangent to a circle *S* at *A*. For any points *B*, *C* on *l* on opposite sides of *A*, let the other tangents from *B* and *C* to *S* intersect at a point *P*. If *B*, *C* vary on *l* so that the product *AB* · *AC* is constant, find the locus of *P*.
- 4. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ $(n \ge 1)$ be a polynomial with real coefficients such that |f(0)| = f(1) and each root α of f is real and lies in the interval [0,1]. Prove that the product of the roots does not exceed $1/2^n$.
- 5. For a complex number z = x + iy we denote by P(z) the corresponding point (x,y) in the plane. Suppose $z_1, z_2, z_3, z_4, z_5, \alpha$ are nonzero complex numbers such that
 - (i) $P(z_1), \dots, P(z_5)$ are vertices of a complex pentagon Q containing the origin Q in its interior, and
 - (ii) $P(\alpha z_1), \dots, P(\alpha z_5)$ are all inside Q.

If
$$\alpha = p + iq$$
 $(p, q \in \mathbb{R})$, prove that $p^2 + q^2 \le 1$ and $p + q \tan \frac{\pi}{5} \le 1$.

Part 2

- 6. Show that among any five points $P_1, dots, P_5$ with integer coordinates in the plane, there exists at least one pair (P_i, P_j) with $i \neq j$ such that the segment P_iP_j contains a point Q with integer coordinates other than P_i, P_j .
- 7. Let a_i, b_i (i = 1, ..., n) be real numbers such that the a_i are distinct, and suppose that there is a real number α such that the product $(a_i + b_1)(a_i + b_2) \cdots (a_i + b_n)$ is equal to α for each i. Prove that there is a real number β such that $(a_1 + b_j)(a_2 + b_j) \cdots (a_n + b_j)$ is equal to β for each j.

8. If $1 \le r \le n$ are integers, prove the identity

$$\sum_{d=1}^{\infty} \binom{n-r+1}{d} \binom{r-1}{d-1} = \binom{n}{r}.$$

9. Prove that for every real number x with $0 < x < \pi$ and every natural number n

$$\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots + \frac{\sin (2n-1)x}{2n-1} > 0.$$

- 10. (a) The rectangle PQRS with PQ = l and QR = m $(l, m \in \mathbb{N})$ is divided into lm unit squares. Prove that the diagonal PR intersects exactly l + m d of these squares, where d = (l, m).
 - (b) A box with edge lengths $l, m, n \in \mathbb{N}$ is divided into lmn unit cubes. How many of the cubes does a main diagonal of the box intersect?

