Indian IMO Team Selection Tests 1998

First Practice Test Mumbai, May 9

- 1. Points D, E, F are taken on the sides BC, CA, AB of a triangle ABC so that BD = CE = AF. Show that if the circumcenters of triangles ABC and DEF coincide then $\triangle ABC$ is equilateral.
- 2. A triangle *PQR* in the coordinate plane has the vertices at lattice points and sides of integer lengths. If PQ = PR, prove that the midpoint *M* of *QR* is a lattice point and that the length of the altitude *PM* is an integer.
- 3. Prove that there is no function $f : \mathbb{Z} \to \mathbb{Z}$ such that for all $m, n \in \mathbb{Z}$

f(m) = n implies f(n) = m and f(n+3) = 3m.

4. For each permutation $\sigma = (a_1, a_2, \dots, a_n)$ of numbers $1, 2, \dots, n$ define

$$S(\sigma) = \frac{a_1}{1} + \frac{a_2}{2} + \dots + \frac{a_n}{n}$$

Find positive integers *n* and *N* for which all the integers *m* with $N \le m \le N + 100$ occur among the values taken by $S(\sigma)$ as σ varies over all permutations of 1, ..., n.

Second Practice Test Mumbai, May 14

- 1. Circle \mathscr{S}_1 and \mathscr{S}_2 touch each other externally at *P* and both touch a circle \mathscr{S} internally at *B* and *C* respectively. The common tangent to \mathscr{S}_1 and \mathscr{S}_2 at *P* meets \mathscr{S} at two points, one of which is denoted by *A*. Lines *AB* and *AC* meet \mathscr{S}_1 and \mathscr{S}_2 again at *Q* and *R* respectively. Show that *QR* is a common tangent to \mathscr{S}_1 and \mathscr{S}_2 .
- 2. (a) Prove that the product of two numbers of the form $a^2 + 3b^2$ $(a, b \in \mathbb{Z})$ is again of the same form.
 - (b) If 7*n* is of the above form and *n* is an integer, show that *n* itself is of that form.
- 3. Given three nonnegative numbers a, b, c, define

$$X = a + b + c + 2\sqrt{a^2 + b^2 + c^2 - bc - ca - ab}$$

- (a) Prove that $X \ge \max\{3a, 3b, 3c\}$.
- (b) One of the numbers $\sqrt{X-3a}, \sqrt{X-3b}, \sqrt{X-3c}$ equals the sum of the other two.

4. Let X be an (n + 2)-element subset of $X = \{-n, -n + 1, ..., n\}$, where n is a given positive integer. Show that there exist distinct numbers $a, b, c \in X$ such that a + b = c.

First Test

Mumbai, May 17

- 1. The altitudes *AK*, *BL*, *CM* in the triangle *ABC* meet at *H*. Let *P* be the midpoint of *AH*. If *BH* and *MK* intersect at *S* and *LP* and *AM* intersect at *T*, show that $TS \perp BC$.
- 2. Find the number of integers x with $|x| \le 1997$ for which 1997 divides $x^2 + (x + 1)^2$.
- 3. If *x*, *y*, *z* are nonegative real numbers such that xy + yz + zx + xyz = 4, prove that

 $x + y + z \ge xy + yz + zx.$

4. Let $a_1 \ge a_2 \ge \cdots \ge a_n$ be integer powers of 2. If $a_1 \le 2000$ and $a_1 + a_2 + \cdots + a_n \ge 2048$, show that $a_1 + a_2 + \cdots + a_m = 2048$ holds for some *m*.

Second Test Mumbai, May 20

- 1. A circle lying inside a parallelogram *ABCD* touches the sides *AB* and *AD* and intersects *BD* at *E* and *F*. Show that there exists a circle passing through *E* and *F* and touching the sides *CB* and *CD*, possibly extended.
- 2. Find all triples (x, y, n) of positive integers with (x, n + 1) = 1 such that $x^n + 1 = y^{n+1}$.
- 3. Real numbers x, y, z satisfy $x^2 = y + 2$, $y^2 = z + 2$, $z^2 = x + 2$. If xyz is negative, find all possible values of $x^2 + y^2 + z^2$.
- 4. In town *X*, there are *n* girls and *n* boys, and each girl knows each boy. In town *Y*, there are *n* girls g_1, g_2, \ldots, g_n and 2n 1 boys $b_1, b_2, \ldots, b_{2n-1}$. The girl $g_i, i = 1, 2, \ldots, n$, knows the boys $b_1, b_2, \ldots, b_{2i-1}$, and no others. For all $r = 1, 2, \ldots, n$, denote by X(r), Y(r) the number of different ways in which *r* girls from town *X*, respectively town *Y*, can dance with *r* boys from their own town, forming *r* pairs, each girl with a boy she knows. Prove that X(r) = Y(r) for each $r = 1, 2, \ldots, n$.

Third Test Mumbai, May 23

2

- 1. Let $A_0B_0C_0$ be a triangle with incenter *I*. For $n \ge 1$ form the triangles $A_nB_nC_n$ successively, where A_n, B_n, C_n are the midpoints of $B_{n-1}C_{n-1}, C_{n-1}A_{n-1}, A_{n-1}B_{n-1}$. Let $r(A_0B_0C_0)$ be the largest integer *n* for which *I* is in the interior of $\triangle A_nB_nC_n$.
 - (a) Show that $r(A_0B_0C_0) \ge 1$;
 - (b) Find the maximum value of $r(A_0B_0C_0)$ among all integer sided triangles $A_0B_0C_0$ with perimeter 98.
- 2. Given a positive integer *m*, consider the set $S = \{m^2, m^2 + 1, \dots, (m+1)^2 1\}$. Show that all the products *ab* with $a, b \in S$ are distinct.
- 3. Let *N* be a positive integer for which N + 1 is a prime and let a_0, \ldots, a_N be numbers from the set $\{0, 1\}$, not all equal. A polynomial f(x) with integer coefficients is such that $f(i) = a_i$ for $i = 0, \ldots, N$. Prove that the degree of *f* is at least *N*.
- 4. For a positive integer *n*, a permutation $(a_0, a_1, ..., a_n)$ of (0, 1, ..., n) is said to be a *square permutation* if $k + a_k$ is a square for each k = (0, 1, ..., n). Show that for every *n* there exists a square permutation of (0, 1, ..., n).

Fourth Test

Mumbai, May 27

- 1. In an acute triangle *ABC* with circumcenter *O*, rays *AO*, *BO*, *CO* meet the sides *BC*, *CA*, *AB* at points *D*, *E*, *F*, respectively. Given that the lengths of *OD*, *OE* and *OF* are integers and the circumradius of $\triangle ABC$ is 4, determine the sides *a*, *b*, *c* of $\triangle ABC$.
- 2. Let P(x) be a polynomial with real coefficients such that P(x) > 0 for all $x \ge 0$. Prove that there exists a positive integer *n* such that $(1+x)^n P(x)$ is a polynomial with nonnegative coefficients.
- 3. Let *n* and *p* be positive integers with $3 \le p \le \frac{n}{2}$. Consider an *n*-sided regular polygon with *p* vertices colored red and the other vertices blue. Show that there are two nondegenerate congruent polygons each with at least $\left[\frac{p}{2}\right] + 1$ vertices such that the vertices of one of these polygons are colored red and those of the other coloured blue.

Fifth Test Mumbai, May 30

1. Let *P* be an interior point of a convex quadrilateral *ABCD*. Show that at least one of the four angles $\angle PAB$, $\angle PBC$, $\angle PCD$, $\angle PDA$ is less than or equal to $\pi/4$.

3

2. Consider the polynomial $f(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)$, where the α_i are complex numbers. Show that there exists a complex number z_0 with $|z_0| = 1$ such that

$$|f(z_0)| > \frac{1}{3^n} \prod_{j=1}^n (1+|\alpha_j|).$$

3. Prove that for any integers $m \ge n \ge 2$ the number of polynomials of degree 2n - 1 with distinct coefficients from the set $\{1, 2, ..., 2m\}$ that are divisible by $x^{n-1} + x^{n-2} + \cdot + x + 1$ is

$$2^n n! \left[\binom{4m+1}{n+1} - \binom{3m}{n} \right].$$

