Indian IMO Team Selection Tests 2001

First Test

- 1. Let *x*, *y*, *z* be positive numbers. Prove that if $xyz \ge xy + yz + zx$, then $xyz \ge 3(x + y + z)$.
- 2. Two symbols *A* and *B* obey the rule ABBB = B. Given a word $x_1x_2...x_{3n+1}$ consisting of *n* letters *A* and 2n + 1 letters *B*, show that there is a unique cyclic permutation of this word which reduces to *B*.
- 3. In a triangle *ABC* with incircle Γ and incenter *I*, the segments *AI*, *BI*, *CI* cut Γ at *D*, *E*, *F*, respectively. Rays *AI*, *BI*, *CI* meet the sides *BC*, *CA*, *AB* at *L*, *M*, *N* respectively. Prove that

$$AL + BM + CN \leq 3(AD + BE + CF).$$

When does equality occur?

Second Test

- 1. For any positive integer *n*, show that there exists a polynomial P(x) of degree *n* with integer coefficients such that $P(0), P(1), \ldots, P(n)$ are all distinct powers of 2.
- 2. Let Q(x) be a cubic polynomial with integer coefficients. Suppose that a prime p divides $Q(x_j)$ for j = 1, 2, 3, 4, where x_1, \ldots, x_4 are distinct integers from the set $\{0, 1, \ldots, p-1\}$. Prove that p divides all the coefficients of Q(x).
- 3. Find the number of all unordered pairs $\{A, B\}$ of subsets of an 8-element set such that $A \cap B \neq \emptyset$ and $|A| \neq |B|$.

Third Test

- 1. Given a triangle *ABC*, triangles *AEB* and *AFC* are constructed externally such that AE = EB, $\angle AEB = 2\alpha$ and AF = FC, $\angle AFC = 2\beta$. Triangle *BDC* is constructed externally such that $\angle DBC = \beta$ and $\angle DCB = \alpha$.
 - (a) Prove that DA is perpendicular to EF.
 - (b) If T is the projection of D on BC, prove that $2\frac{DT}{BC} = \frac{DA}{EF}$.
- 2. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying f(f(x) x) = 2x for all x > 0.
- 3. Points $B = B_1, B_2, ..., B_n, B_{n+1} = C$ are chosen on side *BC* of a triangle *ABC* in that order. Let r_j be the inradius of triangle AB_jB_{j+1} for j = 1, ..., n, and r be the inradius of $\triangle ABC$. Show that there is a constant λ independent of n such that

1

$$(\lambda - r_1)(\lambda - r_2)\cdots(\lambda - r_n) = \lambda^{n-1}(\lambda - r).$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

Fourth Test

- 1. Complex numbers α, β, γ have the property that $\alpha^k + \beta^k + \gamma^k$ is an integer for every natural number *k*. Prove that the polynomial $(x \alpha)(x \beta)(x \gamma)$ has integer coefficients.
- 2. Let p > 3 be a prime. For each $k \in \{1, 2, ..., p-1\}$, define x_k to be the unique integer in $\{1, ..., p-1\}$ such that $kx_k \equiv 1 \pmod{p}$ and set $kx_k = 1 + pn_k$. Prove that

$$\sum_{k=1}^{p-1} kn_k \equiv \frac{p-1}{2} \pmod{p}.$$

- 3. Each vertex of an $m \times n$ grid is colored blue, green or red in such a way that all the boundary vertices are red. We say that a unit square of the grid is *properly colored* if
 - (i) all the three colors occur at the vertices of the square, and
 - (ii) one side of the square has the endpoints of the same color.

Show that the number of properly colored squares is even.

Fifth Test

- 1. Let Γ be an arc of a circle passing through the vertices A and C of a rectangle *ABCD*. Circle Γ_1 is tangent to the sides *AD* and *DC* and Γ , and circle Γ_2 is tangent to the sides *AB* and *BC* and Γ , both Γ_1 and Γ_2 lying entirely inside the rectangle *ABCD*. Let r_i be the radius of Γ_i and r be the inradius of $\triangle ABC$.
 - (a) Prove that $r_1 + r_2 = 2r$.
 - (b) Show that one of the transverse common tangents to Γ_1 and Γ_2 is parallel to *AC* and has the length |AB BC|.
- 2. A strictly increasing sequence (a_n) has the property that $gcd(a_m, a_n) = a_{gcd(m,n)}$ for all $m, n \in \mathbb{N}$. Suppose k is the least positive integer for which there exist positive integers r < k < s such that $a_k^2 = a_r a_s$. Prove that $r \mid k$ and $k \mid s$.
- 3. Let P(x) be a polynomial of degree *n* with real coefficients and let $a \ge 3$. Prove that

$$\max_{0 \le j \le n+1} |a^j - P(j)| \ge 1.$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com