## 8-th Indian Mathematical Olympiad 1993

- 1. The diagonals *AC* and *BD* of a cyclic quadrilateral *ABCD* intersect at point *P*. Let *O* be the circumcenter of triangle *APB* and *H* be the orthocenter of triangle *CPD*. Show that the points *H*, *P*, and *O* lie on a line.
- 2. Consider a quadratic polynomial  $P(x) = x^2 + ax + b$  with  $a, b \in \mathbb{Z}$ . Show that for any integer *n* there is an integer *m* such that P(n)P(n+1) = P(m).
- 3. If a, b, c, d are positive numbers with a + b + c + d = 1, prove that

$$ab+bc+cd\leq \frac{1}{4}.$$

Does the analogous inequality hold for *n* variables?

- 4. Find the set of all points *P* in the set of a triangle *ABC* such that  $P \neq A, B, C$  and the triangles *ABP*, *BCP*, and *CAP* have the same circumradii.
- 5. Show that there exists a natural number *n* such that *n*! in decimal system ends in exactly 1993 zeros.
- 6. Let  $\mathscr{S}$  be the circumcircle of a right triangle *ABC* with  $\angle A = 90^{\circ}$ . Circle  $\mathscr{S}_1$  is tangent to the lines *AB* and *AC* and internally to  $\mathscr{S}$ . Circle  $\mathscr{S}_2$  is tangent to *AB* and *AC* and externally to  $\mathscr{S}$ . If  $r_1$  and  $r_2$  are the radii of  $S_1$  and  $S_2$  prove that  $r_1 \cdot r_2$  equals four times the area of  $\triangle ABC$ .
- 7. Let *B* be a 53-element subset of  $A = \{1, 2, 3, ..., 100\}$ . Prove that there are two distinct elements  $x, y \in B$  whose sum is divisible by 11.
- 8. Let *f* be a bijective function from  $A = \{1, 2, ..., n\}$  to itself. Prove that there is a positive integer *M* such that  $f^{M}(i) = i$  for each  $i \in A$ , where  $f^{M} = f \circ f \circ \cdots \circ f$  (*M* times).
- 9. Prove that there exists a convex hexagon in the plane whose all interior angles are equal and whose side lengths are 1,2,3,4,5,6 in some order.

