6-th Indian Mathematical Olympiad 1991

1. Find the number of positive integarsuch that

() n<1991,
(i) n?+3n+2is amultiple of 6.

2. In an acute-angled trianghBC, the altitude fromA meets the semicircle with
diameterBC constructed outwards at poiat. PointsB’ andC’ are defined anal-

ogously. Prove that
Shea + Saw + Stec = Skec
whereSxyz denotes the area of triangker Z.

3. Given a trianglABC, denote

x = tanc—Stant
o 2 2’
C—-A B

y = tan tan— ,
2

z = tan— tanc
_ 5

Prove tha+y+z+ xyz= 0.
4. Leta,b,c be real numbers in the intervgd, 1) with a+-b+ c= 2. Prove that

a b c .
l-a 1-b 1-c—

5. In a triangleABC with incenterl, pointsX,Y are taken on the segmemitB, AC
respectively such thaX - AB = |B? andCY - AC = IC2. Given that the points
X,1,Y are collinear, find the possible valuesOA.

6. (a) Find all positive integersfor which 31 divides 2" + 1.
(b) Prove that 372 does not divide & + 1 for any positive integen.

7. Determine all real solutionsy, z of the system

X+y—z = 4
-y +7 = -4
Xyz = 6.

8. We are given 10 objects of integer weights with the totagwe?0. Prove that if
none of the weights exceds 10, then the objects can be diuidedyo groups
of equal weights.
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9. The incircld of a triangleABC is centered atand touches the sid&C atT. The
line throughT parallel tol A meets the incircle again &and the tangent to the
incircle atS meetsAB, AC at pointsC’, B/, respectively. Prove that the triangle
AB'C' is similar to the trianglé\BC.

10. For any positive integear, let s(n) denote the number of ordered paxsy) of
positive integers for which

1 1 1
4+ ==
X 'y n

Determine all those for whichs(n) = 5.
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