22-nd Indian Mathematical Olympiad 2007

- 1. In a triangle *ABC* with a right angle at *C*, the median through *B* bisects the angle between *BA* and the bisector of $\angle B$. Prove that $\frac{5}{2} < \frac{AB}{BC} < 3$.
- 2. Let a,b,c be natural numbers and $a^2 + b^2 + c^2 = n$. Prove that there exist constants p_i, q_i, r_i (i = 1, 2, 3) independent of a,b,c such that

$$(p_1a + q_1b + r_1c)^2 + (p_2a + q_2b + r_2c)^2 + (p_2a + q_2b + r_2c)^2 = 9n.$$

Further, if a,b,c are not all divisible by 3, show that 9n can be expressed as $x^2 + y^2 + z^2$ for some natural numbers x,y,z not divisible by 3.

- 3. The equation $x^2 mx + n = 0$ has real roots α and β , where m and n are positive integers. Prove that α and β are integers if and only if $[m\alpha] + [m\beta]$ is a perfect square.
- 4. Let $\sigma = (\sigma_1, \dots, \sigma_n)$ be a permutation of $1, \dots, n$. A pair of indices (i, j) is an *inversion* of σ if i < j and $\sigma_i > \sigma_j$. How many permutations of $1, \dots, n$ $(n \ge 3)$ have exactly two inversions?
- 5. In a triangle *ABC* with AB = AC, *D* is the midpoint of *BC*, *P* a point on *AD*, and *E* the orthogonal projection of *P* on *AC*. If $AP/PD = BP/PE = \lambda$, BD/AD = m and $z = m^2(1 + \lambda)$, prove that

$$z^2 - (\lambda^3 - \lambda^2 - 2)z + 1 = 0.$$

Deduce that $\lambda \geq 2$ with the equality if and only if $\triangle ABC$ is equilateral.

6. If x, y, z are positive numbers, prove the inequality

$$(x+y+z)^2(yz+zx+xy)^2 \le 3(y^2+yz+z^2)(z^2+zx+x^2)(x^2+xy+y^2).$$

