## 15-th Iberoamerican Mathematical Olympiad

## Caracas, Venezuela, September 16-24, 2000

## First Day

- 1. The vertices of a regular n-gon have been labelled by 1 to n ( $n \ge 3$ ). Show that, if n is odd, it is possible to assign to each side or diagonal an integer from 1 to n so that the following two conditions are fulfilled:
  - (i) The number assigned to each side or diagonal is different from the labels of its vertices;
  - (ii) For each vertex, the sides and diagonals emanating from it have different labels.
- 2. Two circles  $S_1$  and  $S_2$  with the respective centers  $O_1$  and  $O_2$  intersect at M and N. Their common tangent t, closer to M, touches  $S_1$  at A and  $S_2$  at B. Point C is diametrically opposite to B, and D is the intersection of line  $O_1O_2$  with the perpendicular to AM from B. Prove that M, D and C are collinear.
- 3. Find all solutions of the equation  $(x+1)^y x^z = 1$  in integers greater than 1.

## Second Day

- 4. Some terms of an infinite arithmetic progression  $1, a_1, a_2,...$  of real numbers have been omitted, yielding an infinite geometric progression  $1, b_1, b_2,...$  of common ratio q. Find all possible values of q.
- 5. There is a pile with 2000 stones. Two players alternately take the stones according to the following rules:
  - (i) A player in turn takes 1,2,3,4 or 5 stones from the pile;
  - (ii) It is prohibited to take as many stones as the opponent did in the previous move.

The player who cannot perform a legal move loses the game. Decide which player has a winning strategy.

- 6. A convex hexagon is called *nice* if it has four diagonals of length 1 whose endpoints include all the vertices of the hexagon.
  - (a) For every 0 < k < 1, give an example of a nice hexagon of area k.
  - (b) Prove that the area of a nice hexagon is less than 3/2.

