9-th International Mathematical Olympiad

Cetinje, Yugoslavia, July 2-13, 1967

First Day – July 5

1. *ABCD* is a parallelogram; AB = a, AD = 1, α is the size of $\angle DAB$, and the three angles of the triangle *ABD* are acute. Prove that the four circles K_A , K_B , K_C , K_D , each of radius 1, whose centers are the vertices *A*, *B*, *C*, *D*, cover the parallelogram if and only if $a \le \cos \alpha + \sqrt{3} \sin \alpha$.

(Czechoslovakia)

- 2. Exactly one side of a tetrahedron is of length greater than 1. Show that its volume is less than or equal to 1/8. (*Poland*)
- 3. Let *k*, *m*, and *n* be positive integers such that m + k + 1 is a prime number greater than n + 1. Write c_s for s(s + 1). Prove that the product $(c_{m+1} c_k)(c_{m+2} c_k) \cdots (c_{m+n} c_k)$ is divisible by the product $c_1c_2 \cdots c_n$. (*Great Britain*)

Second Day – July 6

- 4. The triangles $A_0B_0C_0$ and A'B'C' have all their angles acute. Describe how to construct one of the triangles *ABC*, similar to A'B'C' and circumscribing $A_0B_0C_0$ (so that *A*, *B*, *C* correspond to *A'*, *B'*, *C'*, and *AB* passes through C_0 , *BC* through A_0 , and *CA* through B_0). Among these triangles *ABC* describe, and prove, how to construct the triangle with the maximum area. (*Italy*)
- 5. Consider the sequence (c_n) :

where $a_1, a_2, ..., a_8$ are real numbers, not all equal to zero. Given that among the numbers of the sequence (c_n) there are infinitely many equal to zero, determine all the values of *n* for which $c_n = 0$. (Soviet Union)

6. In a sports competition lasting *n* days there are *m* medals to be won. On the first day, one medal and 1/7 of the remaining m - 1 medals are won. On the second day, 2 medals and 1/7 of the remainder are won. And so on. On the *n*th day exactly *n* medals are won. How many days did the competition last and what was the total number of medals? *(Hungary)*

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com