9-th International Mathematical Olympiad
Cetinje, Yugoslavia, July 2-13, 1967

First Day — July 5

1. ABCD s a parallelogramAB = a, AD = 1, «a is the size of/DAB, and the
three angles of the trianglsBD are acute. Prove that the four circl€g, Kg,
Kc, Kp, each of radius 1, whose centers are the vertigeB, C, D, cover the
parallelogram if and only i < cosa + v/3sina.

(Czechoslovakia)

2. Exactly one side of a tetrahedron is of length greater th&how that its volume
is less than or equal to/8. (Poland)

3. Letk, m, andn be positive integers such that+ k+ 1 is a prime number greater
thann+ 1. Write ¢s for s(s+1). Prove that the produgtim:1 — ¢k)(Cmi2 —
Ck) -+ - (Cmyn — Ck) is divisible by the produat;c; - - - cn. (Great Britain)

Second Day — July 6

4. The trianglesAoByCy and A'B'C’ have all their angles acute. Describe how to
construct one of the triangléBC, similar toA’'B'C’ and circumscribing\o,BoCo
(so thatA, B, C correspond ta&\, B', C’, andAB passes througy, BC through
Ay, andCA throughBp). Among these triangle&BC describe, and prove, how
to construct the triangle with the maximum area. (Italy)

5. Consider the sequen(,):

i = ataxt--tag
C = aj+ag+---+ag,
Cch = aj+ay+---+ay,

whereay, ay, ..., ag are real numbers, not all equal to zero. Given that among the
numbers of the sequence,) there are infinitely many equal to zero, determine
all the values of for whichc, = 0. (Soviet Union)

6. In a sports competition lastimgdays there aren medals to be won. On the first
day, one medal and/¥ of the remainingn— 1 medals are won. On the second
day, 2 medals and/¥ of the remainder are won. And so on. On tite day
exactlyn medals are won. How many days did the competition last and wha
was the total number of medals? (Hungary)
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