4-th International Mathematical Olympiad
Prague — Hluboka, Czechoslovakia, July 7-15, 1962

First Day

1. Find the smallest natural numbewith the following properties:

(a) In decimal representation it ends with 6.

(b) If we move this digit to the front of the number, we get a t@m4 times
larger. (Poland)

2. Find all real numbersfor which
1
\/3—X—\/X+1> E . (Hungary)

3. A cube ABCDA'B'C'D’ is given. The pointX is moving at a constant speed
along the squarABCD in the direction fromA to B. The pointY is moving with
the same constant speed along the sqB&@B' in the direction fronB’ to C'.
Initially, X andY start out fromA andB’ respectively. Find the locus of all the
midpoints ofXY. (Czechoslovakia)

Second Day

4. Solve the equation
coS x4 cog2x+cog3x = 1. (Romania)

5. On the circle&k three pointsA, B, andC are given. Construct the fourth point on
the circleD such that one can inscribe a circleABCD.
(Bulgaria)

6. LetABC be an isosceles triangle with circumradiusnd inradiugp. Prove that
the distancel between the circumcenter and incenter is given by

d=+/r(r—2p). (DR Germany)

7. Prove that a tetrahedr@ABC has five different spheres that touch all six lines
determined by its edges if and only if it is regular.
(Soviet Union)
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