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1. Prove that for all positive integersn,
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2. A pointS inside a triangleABC is such that the areas of the trianglesABS, BCS
andCAS are all equal. Prove thatS is the centroid of△ABC.

3. Let a be any positive integer. Prove that there exists a unique pair of positive
integers(x,y) such that
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(x + y−1)(x + y−2)= a.
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