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1. Let a1,a2, . . . ,an+1 (n ≥ 2) be positive numbers witha2− a1 = a3− a2 = · · · =
an+1−an. Prove that
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2. In a school there areb teachers andc students. Suppose that

(i) each teacher teaches exactlyk students, and

(ii) for any two (distinct) students, exactlyh teachers teach both of them.

Prove that
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3. PointsP andQ are taken on the sidesAB andAC of a triangleABC respectively
such that∠APC = ∠AQB = 45◦. The line throughP perpendicular toAB inter-
sectsBQ atS, and the line throughQ perpendicular toAC intersectsCP atR. Let
D be the foot of the altitude of△ABC from A. Prove thatSR andBC are parallel
and thatPS,AD,QR are concurrent.

4. Let S = {1,2, . . . ,100}. Find the number of functionsf : S → S satisfying the
following conditions:

(i) f (1) = 1;

(ii) f is bijective;

(iii) f (n) = f (g(n)) f (h(n)) for all n ∈ S, whereg(n) andh(n) are the positive
integers withg(n)≤ h(n) andg(n)h(n)= n that minimizeh(n)−g(n). (For
instance,g(80) = 8, h(80) = 10.)
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