3-rd Hong Kong (China) Mathematical Olympiad 2000

December 2, 2000

- 1. Let *O* be the circumcenter of a triangle *ABC* with *AB* > *AC* > *BC*. Let *D* be a point on the minor arc *BC* of the circumcircle and let *E* and *F* be points on *AD* such that $AB \perp OE$ and $AC \perp OF$. The lines *BE* and *CF* meet at *P*. Prove that if PB = PC + PO, then $\angle BAC = 30^{\circ}$.
- 2. Define $a_1 = 1$ and $a_{n+1} = \frac{a_n}{n} + \frac{n}{a_n}$ for $n \in \mathbb{N}$. Find the greatest integer not exceeding a_{2000} and prove your claim.
- 3. Find all prime numbers p and q such that $\frac{(7^p 2^p)(7^q 2^q)}{pq}$ is an integer.
- 4. Find all positive integers $n \ge 3$ such that there exists an *n*-gon with vertices in lattice points of the coordinate plane and all sides of equal length.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com