5-th Hungary–Israel Binational Mathematical Competition 1994

- 1. Let a_1, a_2, \ldots, a_n be positive numbers. If a_{k+1}, \ldots, a_n (k < n) are fixed, how should one choose a_1, \ldots, a_k in order to minimize $\sum_{i \neq j} \frac{a_i}{a_j}$?
- 2. Three congruent circles pass through a point P are intersect each other again at points A, B, C. The three circles are contained in a triangle A'B'C' whose each side is tangent to two of the circles. Prove that the area of $\triangle A'B'C'$ is at least 9 times the area of $\triangle ABC$.
- 3. Let *m* and *n* be two different natural numbers. Show that there exists a real number *x* such that $\frac{1}{3} \leq \{mx\} \leq \frac{2}{3}$ and $\frac{1}{3} \leq \{nx\} \leq \frac{2}{3}$.
- 4. An n-m society is a group of n girls and m boys. Prove that there exist numbers m_0, n_0 such that every n_0-m_0 society contains a subgroup of five boys and five girls in which every boy knows every girl or no boy knows any girl.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu