4-th Hungary–Israel Binational Mathematical Competition 1993

Budapest, Hungary

Individual competition – April 21

- 1. Find all pairs of coprime natural numbers a and b such that the fraction a/b is written in the decimal system as b.a.
- 2. Determine all polynomials f(x) with real coefficients that satisfy

$$f(x^2 - 2x) = f(x - 2)^2$$
 for all x.

3. Distinct points A, B, C, D, E are given in this order on a semicircle with radius 1. Prove that

 $AB^{2} + BC^{2} + CD^{2} + DE^{2} + AB \cdot BC \cdot CD + BC \cdot CD \cdot DE < 4.$

4. Find the largest possible number of rooks that can be placed on a $3n \times 3n$ chessboard so that each rook is attacked by at most one rook.

Team competition – April 22

In the questions below: G is a finite group; $H \leq G$ a subgroup of G; |G : H| the index of H in G; |X| the number of elements of $X \subset G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of H in G; $C_G(H)$ the centralizer of H in G; and S_n the n-th symmetric group.

- 1. Suppose $k \ge 2$ is an integer such that for all $x, y \in G$ and $i \in \{k-1, k, k+1\}$ the relation $(xy)^i = x^i y^i$ holds. Show that G is Abelian.
- 2. Suppose that $n \ge 1$ is such that the mapping $x \mapsto x^n$ from G to itself is an isomorphism. Prove that for each $a \in G$, $a^{n-1} \in Z(G)$.
- 3. Show that every element of S_n is a product of 2-cycles.
- 4. Let $H \leq G$ and $a, b \in G$. Prove that $|aH \cap Hb|$ is either zero or a divisor of |H|.
- 5. Let $H \leq G$, |H| = 3. What can be said about $|N_G(H) : C_G(H)|$?
- 6. Let $a, b \in G$. Suppose that $ab^2 = b^3a$ and $ba^2 = a^3b$. Prove that a = b = 1.
- 7. Assume |G'| = 2. Prove that |G:G'| is even.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu