## 3-rd Hungary–Israel Binational Mathematical Competition 1992

Weizmann Institute, Rehovot, Israel

## Individual competition – May 22

1. Prove that if c is a positive number distinct from 1 and n a positive integer, then

$$n^{2} \leq \frac{c^{n} + c^{-n} - 2}{c + c^{-1} - 2}$$

- 2. A set S consists of 1992 positive integers among whose units digits all 10 digits occur. Show that there is such a set S having no nonempty subset  $S_1$  whose sum of elements is divisible by 2000.
- 3. We are given 100 strictly increasing sequences of positive integers:  $A_i = (a_1^{(i)}, a_2^{(i)}, \ldots), i = 1, 2, \ldots, 100$ . For  $1 \le r, s \le 100$  we define the following quantities:
  - $f_r(u) =$  the number of elements of  $A_r$  not exceeding n;  $f_{r,s}(u) =$  the number of elements of  $A_r \cap A_s$  not exceeding n.

Suppose that  $f_r(n) \ge \frac{1}{2}n$  for all r and n. Prove that there exists a pair of indices (r, s) with  $r \ne s$  such that  $f_{r,s}(n) \ge \frac{8n}{33}$  for at least five distinct n-s with  $1 \le n < 19920$ .

4. A convex pentagon P with all vertices at lattice points is given on a coordinate plane. Let Q denote the convex pentagon bounded by its five diagonals. Show that there is a lattice point inside Q or on its boundary.

## Team competition – May 25

We examine the following two sequences:

- The Fibonacci sequence:  $F_0 = 0$ ,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ ;
- The Lucas sequence:  $L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2}$  for  $n \ge 2$ .

It is known that for all  $n \ge 0$ 

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}, \quad L_n = \alpha^n + \beta^n, \text{ where } \alpha = \frac{1 + \sqrt{5}}{2}, \ \beta = \frac{1 - \sqrt{5}}{2}.$$

These formulae can be used without proof.



The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

1

1. Prove that  $1 + L_{2^j} \equiv 0 \pmod{2^{j+1}}$  for  $j \ge 0$ .

2. Prove that 
$$\sum_{k=1}^{n} \left[ \alpha^{k} F_{k} + \frac{1}{2} \right] = F_{2n+1}$$
 for  $n > 1$ .

- 3. We call a nonnegative integer r-Fibonacci number if it is a sum of r (not necessarily distinct) Fibonacci numbers. Show that there infinitely many positive integers that are not r-Fibonacci numbers for any  $r, 1 \le r \le 5$ .
- 4. Prove that  $F_{n-1}F_nF_{n+1}L_{n-1}L_nL_{n+1}$   $(n \ge 2)$  is not a perfect square.
- 5. Show that  $L_{2n+1} + (-1)^{n+1}$   $(n \ge 1)$  can be written as a product of three (not necessarily distinct) Fibonacci numbers.
- 6. The coordinates of all vertices of a given rectangle are Fibonacci numbers. Suppose that the rectangle is not such that one of its vertices is on the x-axis and another on the y-axis. Prove that either the sides of th rectangles are parallel to the axes, or make an angle of  $45^{\circ}$  with the axes.



2

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu