2-nd Hungary–Israel Binational Mathematical Competition 1991

- 1. Suppose f(x) is a polynomial with integer coefficients such that f(0) = 11 and $f(x_1) = f(x_2) = \cdots = f(x_n) = 2002$ for some distinct integers x_1, x_2, \ldots, x_n . Find the largest possible value of n.
- 2. A rectangular sheet of paper is folded so that point D maps to a point D' on side BC. Thereby point A maps to a point A'. The lines AB and A'D' intersect at E. Prove that if r is the inradius of the triangle EBD', then r = A'E.
- 3. Let H_n be the set of numbers $2 \pm \sqrt{2 \pm \sqrt{2 \pm \cdots \pm \sqrt{2}}}$ with n square roots.
 - (a) Prove that all elements of H_n are real numbers.
 - (b) Evaluate the product of the elements of H_n .
 - (c) If the elements of H_{11} are arranged in the increasing order, find the position of the element determined by the sequence of signs ++++++-++-+-.
- 4. Find all real values of λ for which the system

$$\begin{array}{rcl} x+y+z+v & = & 0 \\ (xy+yz+zv)+\lambda(xz+xv+yv) & = & 0 \end{array}$$

has a unique real solution.

