13-th Hungary–Israel Binational Mathematical Competition 2002

First Day - Budapest, March 21

- 1. Find the greatest exponent k for which 2001^k divides $2000^{2001^{2002}} + 2002^{2001^{2000}}$.
- 2. Points A_1, B_1, C_1 are given inside an equilateral triangle ABC such that

$$\angle B_1AB = \angle A_1BA = 15^{\circ},$$

 $\angle C_1BC = \angle B_1CB = 20^{\circ},$
 $\angle A_1CA = \angle C_1AC = 25^{\circ}.$

Find the angles of triangle $A_1B_1C_1$.

3. Let $p \ge 5$ be a prime number. Prove that there exists a positive integer a < p-1 such that neither of $a^{p-1}-1$ and $(a+1)^{p-1}-1$ is divisible by p^2 .

Second Day – Budapest, March 22

- 4. Suppose that positive numbers x and y satisfy $x^3 + y^4 \le x^2 + y^3$. Prove that $x^3 + y^3 \le 2$.
- 5. Let A', B', C' be the projections of a point M inside a triangle ABC onto the sides BC, CA, AB, respectively. Define $p(M) = \frac{MA' \cdot MB' \cdot MC'}{MA \cdot MB \cdot MC}$. Find the position of point M that maximizes p(M).
- 6. Let p(x) be a polynomial with rational coefficients, of degree at least 2. Suppose that a sequence (r_n) of rational numbers satisfies $r_n = p(r_{n+1})$ for every $n \ge 1$. Prove that the sequence (r_n) is periodic.

