11-th German Federal Mathematical Competition 1980/81

Second Round

- 1. A sequence $a_1, a_2, a_3, ...$ is defined as follows: a_1 is a positive integer and $a_{n+1} = [\frac{3}{2}a_n] + 1$ for all $n \in \mathbb{N}$. Can a_1 be taken in such a way that the first 100000 terms of the sequence are even, but the 100001-th term is odd?
- 2. A bijective mapping from a plane to itself maps every circle to a circle. Prove that it maps every line to a line.
- 3. Let $n = 2^{k-1}$, where k is a positive integer. Prove that among any 2n 1 integers there exist n integers whose sum is divisible by n.
- 4. A set M of natural numbers has the property that for every $x \in M$, 4x and $[\sqrt{x}]$ are elements of M. Show that every natural number belongs to M.

