32-nd German Federal Mathematical Competition 2001/02

Second Round

- 1. A deck of cards which are labelled with numbers from 1 to n is shuffled. The following procedure is applied repeatedly: If the card with number k is at the top of the deck, then the order of the top k cards is reversed. Prove that after finitely many steps the card with number 1 will be at top position.
- 2. Consider strictly increasing sequences $a_0, a_1, a_2, ...$ of nonnegative integers with the property that every nonnegative integer can be uniquely written in the form $a_i + 2a_j + 4a_k$ (with *i*, *j*, *k* not necessarily distinct). Show that there exists exactly one such sequence and determine a_{2002} .
- 3. Given a convex polyhedron with an even number of edges, prove that every edge can be assigned an arrow such that for each vertex the number of incoming arrows is even.
- 4. In an acute-angled triangle *ABC*, H_a and H_b are the feet of the altitudes from *A* and *B*, respectively. Furthermore, W_a and W_b are the intersections of the angle bisectors of $\angle CAB$ and $\angle ABC$ with the opposite sides, respectively. Prove that the incenter *I* of $\triangle ABC$ lies on segment H_aH_b if and only if the circumcenter *O* lies on segment W_aW_b .

