French IMO Selection Test 2007

First Day

1. For a positive integer a, denote by a' the integer obtained by the following method: the decimal writing of a' is the inverse of the decimal writing of a (the decimal writing of a' can begin by zeros, unlike the one of a).

Given a positive integer a_1 , denote by a_n the sequence defined by $a_{n+1} = a_n + a'_n$. Can a_7 be prime?

2. If $a, b, c, d \in \mathbb{R}_+$ satisfy a + b + c + d = 1 prove that

$$6(a^3 + b^3 + c^3 + d^3) \ge a^2 + b^2 + c^2 + d^2 + \frac{1}{8}.$$

3. No two sides of a cyclic quadrilateral *ABCD* are parallel. Let $E = AC \cap BD$ and $F = AD \cap BC$. Prove that C, D, E, F lie on a circle if and only if $EF \perp AB$.

Second Day

- 4. Is it possible to choose 5 points in the space in such a way that for each integer n, 1 ≤ n ≤ 10, there are two among the chosen points whose distance is exactly n?
- 5. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that:

$$f(x-y+f(y)) = f(x)+f(y)$$
, for all $x, y \in \mathbb{Z}$.

6. Angles of $\triangle ABC$ satisfy $\angle C < \angle A < 90^{\circ}$. Let *D* be a point on *AC* such that BD = BA and denote by *K* and *L* the points of tangency of the incircle of $\triangle ABC$ with the sides *AB* and *AC* respectively. If *J* is the incenter of the incircle of $\triangle BCD$ prove that *KL* bisects *AJ*.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com