French IMO Selection Test 2005

First Day

- 1. Suppose that positive integers x and y satify $3x^2 + x = 4y^2 + y$. Prove that x y is a perfect square.
- 2. Two rectangular triangles of respective areas S and S' are given such that the incircle of the first is congruent to the circumcircle of the second. Prove that

$$\frac{S}{S'} \ge 3 + 2\sqrt{2}.$$

- 3. At an international conference with $n \ge 3$ participants, 14 languages are spoken. It is known that:
 - (i) every three participants speak one language in common;
 - (ii) each language is spoken by at most half the participants.

What is the smallest possible value of *n*?

Second Day

4. Let *X* be a nonempty set of natural numbers. Suppose that for all $x \in X$

$$4x \in X$$
 and $[\sqrt{x}] \in X$.

_

Show that $X = \mathbb{N}$.

- 5. In a triangle *ABC* with $BC = AC + \frac{1}{2}AB$, *P* is a point on side *AB* such that AP = 3PB. Prove that $\angle PAC = 2\angle CPA$.
- 6. Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ be a polynomial of degree $n \ge 5$ with integer coefficients. Suppose that *P* has *n* distinct integer roots $0, \alpha_2, \dots, \alpha_n$. Find all integers *k* such that P(P(k)) = 0.

