French IMO Selection Test 2002

First Day

- 1. In an acute-angled triangle ABC, A_1 and B_1 are the feet of the altitudes from A and B respectively, and M is the midpoint of AB.
 - (a) Prove that MA_1 is tangent to the circumcircle of triangle A_1B_1C .
 - (b) Prove that the circumcircles of triangles $A_1B_1C_1$, BMA_1 , and AMB_1 have a common point.
- 2. Consider the set *S* of integers *k* which are products of four distinct primes. Such an integer $k = p_1 p_2 p_3 p_4$ has 16 positive divisors $1 = d_1 < d_2 < \cdots < d_{15} < d_{16} = n$. Find all elements of *S* less than 2002 such that $d_9 d_8 = 22$.
- 3. Let *n* be a positive integer and let $(a_1, a_2, \dots, a_{2n})$ be a permutation of $1, 2, \dots, 2n$ such that the numbers $|a_{i+1} a_i|$ are pairwise distinct for $i = 1, \dots, 2n 1$.
 - (a) Prove that if $a_2, a_4, ..., a_{2n}$ are in the set $\{1, ..., n\}$, then $a_1 a_{2n} = n$.
 - (b) Prove the converse.

Second Day

- 4. There are three countries and *n* mathematicians in each of them. Suppose that every mathematician knows at least n + 1 mathematicians from the other two countries. Prove that there exist three mathematicians who know each other.
- 5. In a non-equilateral triangle *ABC*, *I* is the incenter and *O* the circumcenter. Prove that $\angle AIO \le 90^\circ$ if and only if $2BC \le AB + AC$.
- 6. Let $p \ge 3$ be a prime number. Show that there exist p positive integers a_1, a_2, \ldots, a_p not exceeding $2p^2$ such that the $\frac{p(p-1)}{2}$ sums $a_i + a_j$ (i < j) are all distinct.

