French Mathematical Olympiad 1998

Time: 5 hours.

1. A tetrahedron *ABCD* satisfies the following conditions: the edges *AB*,*AC* and *AD* are pairwise orthogonal, AB = 3 and $CD = \sqrt{2}$. Find the minimum possible value of

$$BC^6 + BD^6 - AC^6 - AD^6$$

2. Let (u_n) be a sequence of real numbers which satisfies

$$u_{n+2} = |u_{n+1}| - u_n$$
 for all $n \in \mathbb{N}$.

Prove that there exists a positive integer *p* such that $u_n = u_{n+p}$ holds for all $n \in \mathbb{N}$.

3. Let $k \ge 2$ be an integer. The function $f : \mathbb{N} \to \mathbb{N}$ is defined by

$$f(n) = n + \left[\sqrt[k]{n + \sqrt[k]{n}}\right].$$

Determine the set of values taken by the function f.

- 4. Let be given two lines D_1 and D_2 which intersect at point O, and a point M not on any of these lines. Consider two variable points $A \in D_1$ and $B \in D_2$ such that M belongs to the segment AB.
 - (a) Prove that there exists a position of *A* and *B* for which the area of triangle *OAB* is minimal. Construct such points *A* and *B*.
 - (b) Prove that there exists a position of *A*, *B* for which the perimeter of triangle *OAB* is minimal. Show that for such *A*, *B* the perimeters of $\triangle OAM$ and $\triangle OBM$ are equal, and that $\frac{AM}{\tan \frac{1}{2} \angle OAM} = \frac{BM}{\tan \frac{1}{2} \angle OBM}$. Construct such points *A* and *B*.
- 5. Let *A* be a set of $n \ge 3$ points in the plane, no three of which are collinear. Show that there is a set *S* of 2n 5 points in the plane such that, for each triangle with vertices in *A*, there exists a point in *S* which is strictly inside that triangle.

1