French Mathematical Olympiad 1996

Time: 5 hours.

- 1. Consider a triangles *ABC* and points D, E, F, G, H, I in the plane such that *ABED*, *BCGF* and *ACHI* are squares exterior to the triangle. Prove that points D, E, F, G, H, I are concyclic if and only if one of the following two statements hold:
 - (i) ABC is an equilateral triangle.
 - (ii) ABC is an isosceles right triangle.
- 2. Let *a* be an odd natural number and *b* be a positive integer. We define a sequence of reals (u_n) as follows: $u_0 = b$ and, for all $n \in \mathbb{N}_0$, u_{n+1} is $u_n/2$ if u_n is even and $a + u_n$ otherwise.
 - (a) Prove that one can find an element of u_n smaller than a.
 - (b) Prove that the sequence is eventually periodic.
- 3. (a) Let be given a rectangular parallelepiped. Show that some four of its vertices determine a tetrahedron whose all faces are right triangles.
 - (b) Conversely, prove that every tetrahedron whose all faces are right triangles can be obtained by selecting four vertices of a rectangular parallelepiped.
 - (c) Now investigate such tetrahedra which also have at least two isosceles faces. Given the length *a* of the shortest edge, compute the lengths of the other edges.
- (a) A function f is defined by f(x) = x^x for all x > 0. Find the minimum value of f.
 - (b) If x and y are two positive real numbers, show that $x^y + y^x > 1$.
- 5. Let *n* be a positive integer. We say that a natural number *k* has the property C_n if there exist 2k distinct positive integers $a_1, b_1, \ldots, a_k, b_k$ such that the sums $a_1 + b_1, \ldots, a_k + b_k$ are distinct and strictly smaller than *n*.
 - (a) Prove that if k has the property C_n then $k \le \frac{2n-3}{5}$.
 - (b) Prove that 5 has the property C_{14} .
 - (c) If $\frac{2n-3}{5}$ is an integer, prove that it has the property C_n .

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com