French Mathematical Olympiad 1995

Time: 5 hours.

- 1. We are given a triangle *ABC* in a plane *P*. To any line *D*, not parallel to any side of the triangle, we associate the barycenter G_D of the set of intersection points of *D* with the sides of $\triangle ABC$. The object of this problem is determining the set \mathscr{F} of points G_D when *D* varies.
 - (a) If *D* goes over all lines parallel to a given line δ , prove that G_D describes a line Δ_{δ} .
 - (b) Assume $\triangle ABC$ is equilateral. Prove that all lines Δ_{δ} are tangent to the same circle as δ varies, and describe the set \mathscr{F} .
 - (c) If *ABC* is an arbitrary triangle, prove that one can find a plane *P* and an equilateral triangle A'B'C' whose orthogonal projection onto *P* is $\triangle ABC$, and describe the set \mathscr{F} in the general case.

2. Study the convergence of a sequence defined by $u_0 \ge 0$ and $u_{n+1} = \sqrt{u_n} + \frac{1}{n+1}$ for all $n \in \mathbb{N}_0$.

- 3. Consider three circles in the plane Γ₁, Γ₂, Γ₃ of radii *R* passing through a point *O*, and denote by *D* the set of points of the plane which belong to at least two of these circles. Find the position of Γ₁, Γ₂, Γ₃ for which the area of *D* is minimum possible. Justify your answer.
- 4. Suppose $A_1, A_2, A_3, B_1, B_2, B_3$ are points in the plane such that for each $i, j \in \{1, 2, 3\}$ it holds that $A_iB_j = i + j$. What can be said about these six points?
- 5. Let *f* be a bijection from \mathbb{N} into itself. Prove that one can always find three natural numbers *a*,*b*,*c* such that *a* < *b* < *c* and *f*(*a*) + *f*(*c*) = 2*f*(*b*).

