## French Mathematical Olympiad 1993

Time: 5 hours.

- Assume we are given a set of weights, x₁ of which have mass d₁, x₂ have mass d₂, etc, xk have mass dk, where xi, di are positive integers and 1 ≤ d₁ < d₂ < ··· < dk. Let us denote their total sum by n = x₁d₁ + ··· + xkdk. We call such a set of weights *perfect* if each mass 0, 1, ..., n can be uniquely obtained using these weights.
  - (a) Write down all sets of weights of total mass 5. Which of them are perfect?
  - (b) Show that a perfect set of weights satisfies

$$(1+x_1)(1+x_2)\dots(1+x_k) = n+1.$$

- (c) Conversely, if (1 + x<sub>1</sub>)(1 + x<sub>2</sub>)...(1 + x<sub>k</sub>) = n + 1, prove that one can uniquely choose the corresponding masses d<sub>1</sub>,d<sub>2</sub>,...,d<sub>k</sub> with 1 ≤ d<sub>1</sub> < ... < d<sub>k</sub> in order that the obtained set of weights is perfect.
- (d) Determine all perfect sets of weights of total mass 1993.
- 2. Let *n* be a given positive integer.
  - (a) Do there exist 2n + 1 consecutive positive integers  $a_0, a_1, \dots, a_{2n}$  in the ascending order such that  $a_1 + \dots + a_n = a_{n+1} + \dots + a_{2n}$ ?
  - (b) Do there exist consecutive positive integers  $a_0, a_1, \ldots, a_{2n}$  in the ascending order such that  $a_1^2 + \cdots + a_n^2 = a_{n+1}^2 + \cdots + a_{2n}^2$ ?
  - (c) Do there exist consecutive positive integers  $a_0, a_1, \ldots, a_{2n}$  in the ascending order such that  $a_1^3 + \cdots + a_n^3 = a_{n+1}^3 + \cdots + a_{2n}^3$ ? You may study the function  $f(x) = (x - n)^3 + \cdots + x^3 - (x + 1)^3 - \cdots - (x + n)^3$  and prove that the equation f(x) = 0 has a unique solution  $x_n$  with  $3n(n+1) < x_n < 3n(n+1) + 1$ . You may use the identity  $1^3 + 2^3 + \cdots + n^3 = n^2(n+1)^2/2$ .
- 3. Let f be a function from  $\mathbb{Z}$  to  $\mathbb{R}$  which is bounded from above and satisfies  $f(n) \leq \frac{1}{2} (f(n-1) + f(n+1))$  for all n. Show that f is constant.
- 4. We are given a disk  $\mathscr{D}$  of radius 1 in the plane.
  - (a) Prove that  $\mathscr{D}$  cannot be covered with two disks of radii r < 1.
  - (b) Prove that, for some *r* < 1, 𝒴 can be covered with three disks of radii *r*. What is the smallest such *r*?
- 5. (a) Let be given two points A, B in the plane.
  - i. Find the triangles MAB with a given area and the minimal perimeter.
  - ii. Find the triangles MAB with a given parameter and the maximal area.
  - (b) In a tetrahedron of volume V, let a, b, c, d be the lengths of its four edges, no three of which are coplanar, and let L = a + b + c + d. Determine the maximum value of  $V/L^3$ .



The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com