French Mathematical Olympiad 1992

Time: 5 hours.

- 1. Let Δ be a convex figure in a plane \mathscr{P} . Given a point $A \in \mathscr{P}$, to each pair (M, N) of points in Δ we associate the point $m \in \mathscr{P}$ such that $\overrightarrow{Am} = \overrightarrow{MN}/2$ and denote by $\delta_A(\Delta)$ the set of all so obtained points *m*.
 - (a) i. Prove that $\delta_A(\Delta)$ is centrally symmetric.
 - ii. Under which conditions is $\delta_A(\Delta) = \Delta$?
 - iii. Let B, C be points in \mathscr{P} . Find a transformation which sends $\delta_B(\Delta)$ to $\delta_C(\Delta)$.
 - (b) Determine $\delta_A(\Delta)$ if
 - i. Δ is a set in the plane determined by two parallel lines.
 - ii. Δ is bounded by a triangle.
 - iii. Δ is a semi-disk.
 - (c) Prove that in the cases *b*.2 and *b*.3 the lengths of the boundaries of Δ and $\delta_A(\Delta)$ are equal.
- 2. Let \mathscr{C} be a circle of radius 1.
 - (a) Determine the triangles *ABC* inscribed in \mathscr{C} for which $AB^2 + BC^2 + CA^2$ is maximal.
 - (b) Determine the quadrilaterals *ABCD* inscribed in \mathscr{C} for which $AB^2 + AC^2 + AD^2 + BC^2 + BD^2 + CD^2$ is maximal.
- 3. Let *ABCD* be a tetrahedron inscribed in a sphere with center *O*, and *G* and *I* be its barycenter and incenter respectively. Prove that the following are equivalent:
 - (i) Points O and G coincide.
 - (ii) The four faces of the terahedron are congruent.
 - (iii) Points O and I coincide.
- 4. Given u_0, u_1 with $0 < u_0, u_1 < 1$, define the sequence (u_n) recurrently by the formula

$$u_{n+2} = \frac{1}{2} \left(\sqrt{u_{n+1}} + \sqrt{u_n} \right).$$

- (a) Prove that the sequence u_n is convergent and find its limit.
- (b) Prove that, starting from some index n_0 , the sequence u_n is monotonous.

1

5. Determine the number of digits 1 in the integer part of $\frac{10^{1992}}{10^{83}+7}$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com