French Mathematical Olympiad 1991

Time: 5 hours.

- 1. (a) Suppose that x_n $(n \ge 0)$ is a sequence of real numbers with the property that $x_0^3 + x_1^3 + \dots + x_n^3 = (x_0 + x_1 + \dots + x_n)^2$ for each $n \in \mathbb{N}$. Prove that for each $n \in \mathbb{N}_0$ there exists $m \in \mathbb{N}_0$ such that $x_0 + x_1 + \dots + x_n = \frac{m(m+1)}{2}$.
 - (b) For natural numbers *n* and *p*, we define $S_{n,p} = 1^p + 2^p + \cdots + n^p$. Find all natural numbers *p* such that $S_{n,p}$ is a perfect square for each $n \in \mathbb{N}$.
- 2. For each $n \in \mathbb{N}$, the function f_n is defined on real numbers $x \ge n$ by

$$f_n(x) = \sqrt{x-n} + \sqrt{x-n+1} + \dots + \sqrt{x+n} - (2n+1)\sqrt{n}.$$

- (a) If *n* is fixed, prove that $\lim_{x\to+\infty} f_n(x) = 0$.
- (b) Find the limit of $f_n(n)$ as $n \to +\infty$.
- 3. Let *S* be a fixed point on a sphere Σ with center Ω . Consider all tetrahedra *SABC* inscribed in Σ such that *SA*, *SB*, *SC* are pairwise orthogonal.
 - (a) Prove that all the planes ABC pass through a single point.
 - (b) In one such tetrahedron, *H* and *O* are the orthogonal projections of *S* and Ω onto the plane *ABC*, respectively. Let *R* denote the circumradius of $\triangle ABC$. Prove that $R^2 = OH^2 + 2SH^2$.
- 4. Let *p* be a nonnegative integer and let $n = 2^p$. Consider all subsets *A* of the set $\{1, 2, ..., n\}$ with the property that, whenever $x \in A$, $2x \notin A$. Find the maximum number of elements that such a set *A* can have.
- 5. (a) For given complex numbers a_1, a_2, a_3, a_4 , we define a function $P : \mathbb{C} \to \mathbb{C}$ by $P(z) = z^5 + a_4 z^4 + a_3 z^3 + a_2 z^2 + a_1 z$. Let $w_k = e^{2ki\pi/5}$, where $k = 0, \ldots, 4$. Prove that

$$P(w_0) + P(w_1) + P(w_2) + P(w_3) + P(w_4) = 5.$$

(b) Let A_1, A_2, A_3, A_4, A_5 be five points in the plane. A pentagon is inscribed in the circle with center A_1 and radius R. Prove that there is a vertex S of the pentagon for which

$$SA_1 \cdot SA_2 \cdot SA_3 \cdot SA_4 \cdot SA_5 \ge R^5$$
.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com