French Mathematical Olympiad 1990

Time: 5 hours.

- 1. Let the sequence u_n be defined by $u_0 = 0$ and $u_{2n} = u_n$, $u_{2n+1} = 1 u_n$ for each $n \in \mathbb{N}_0$.
 - (a) Calculate u_{1990} .
 - (b) Find the number of indices $n \le 1990$ for which $u_n = 0$.
 - (c) Let p be a natural number and $N = (2^p 1)^2$. Find u_N .
- 2. A game consists of pieces of the shape of a regular tetrahedron of side 1. Each face of each piece is painted in one of *n* colors, and by this the faces of one piece are not necessarily painted in different colors. Determine the maximum possible number of pieces, no two of which are identical.
- 3. (a) Find all triples of integers (a,b,c) for which $\frac{1}{4} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.
 - (b) Determine all positive integers n for which there exist positive integers x_1, x_2, \dots, x_n such that $1 = \frac{1}{x_1^2} + \frac{1}{x_2^2} + \dots + \frac{1}{x_n^2}$.
- 4. (a) What is the maximum area of a triangle with vertices in a given square (or on its boundary)?
 - (b) What is the maximum volume of a tetrahedron with vertices in a given cube (or on its boundary)?
- 5. In a triangle ABC, Γ denotes the excircle corresponding to A, A', B', C' are the points of tangency of Γ with BC, CA, AB respectively, and S(ABC) denotes the region of the plane determined by segments AB', AC' and the arc C'A'B' of Γ .

Prove that there is a triangle ABC of a given perimeter p for which the area of S(ABC) is maximum. For this triangle, give an approximate measure of the angle at A.

