French Mathematical Olympiad 1989

Time: 5 hours.

- 1. Given a figure *B* in the plane, consider the figures *A*, containing *B*, with the property (*P*): a composition of an odd number of central symmetries with centers in *A* is also a central symmetry with center in *A*. The task of this problem is to determine the smallest such figure, denoted by *A*, that is contained in every figure *A*.
 - (a) Determine the figure \mathscr{A} if *B* consists of: (1) two distinct points *I*,*J*; (2) three non-collinear points *I*,*J*,*K*.
 - (b) Determine \mathscr{A} if *B* is a circle (with nonzero radius).
 - (c) Give some examples of figures *B* whose associated figures *A* are mutually distinct and distinct from the above ones.
- 2. (a) Let z_1, z_2 be complex numbers such that $z_1 z_2 = 1$ and $|z_1 z_2| = 2$. Let A, B, M_1, M_2 denote the points in complex plane corresponding to $-1, 1, z_1, z_2$, respectively. Show that AM_1BM_2 is a trapezoid and compute the lengths of its non-parallel sides. Specify the particular cases.
 - (b) Let \mathscr{C}_1 and \mathscr{C}_2 be circles in the plane with centers O_1 and O_2 , respectively, and with radius $d\sqrt{2}$, where $2d = O_1O_2$. Let *P* and *Q* be two variable points on \mathscr{C}_1 and \mathscr{C}_2 respectively, both on O_1O_2 on on different sides of O_1O_2 , such that PQ = 2d. Prove that the locus of midpoints *I* of segments *PQ* is the same as the locus of points *M* with $MO_1 \cdot MO_2 = m$ for some *m*.
- 3. Find the greatest real k such that, for every tetrahedron ABCD of volume V, the product of areas of faces ABC, ABD and ACD is at least kV^2 .
- 4. For natural numbers x_1, \ldots, x_k , let $[x_k, \ldots, x_1]$ be defined recurrently as follows: $[x_2, x_1] = x_2^{x_1}$ and, for $k \ge 3$, $[x_k, x_{k-1}, \ldots, x_1] = x_k^{[x_{k-1}, \ldots, x_1]}$.
 - (a) Let $3 \le a_1 \le a_2 \le \cdots \le a_n$ be integers. For a permutation σ of the set $\{1, 2, \dots, n\}$, we set $P(\sigma) = [a_{\sigma(n)}, a_{\sigma(n-1)}, \dots, a_{\sigma(1)}]$. Find the permutations σ for which $P(\sigma)$ is minimum or maximum.
 - (b) Find all integers *a*,*b*,*c*,*d*, greater than or equal to 2, for which [178,9] ≤ [*a*,*b*,*c*,*d*] ≤ [198,9].
- 5. Let a_1, a_2, \ldots, a_n be positive real numbers. Denote

$$s = \sum_{k=1}^{n} a_k$$
 and $s' = \sum_{k=1}^{n} a_k^{1-1/k}$.

(a) Let $\lambda > 1$ be a real number. Show that $s' < \lambda s + \frac{\lambda}{\lambda - 1}$.

(b) Deduce that $\sqrt{s'} < \sqrt{s} + 1$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com