## French Mathematical Olympiad 1986

- 1. Let ABCD be a tetrahedron.
  - (a) Prove that the midpoints of the edges AB, AC, BD, and CD lie in a plane.
  - (b) Find the point in that plane, whose sum of distances from the lines *AD* and *BC* is minimal.
- 2. Points A, B, C, and M are given in the plane.
  - (a) Let *D* be the point in the plane such that  $DA \le CA$  and  $DB \le CB$ . Prove that there exists point *N* satisfying  $NA \le MA$ ,  $NB \le MB$ , and  $ND \le MC$ .
  - (b) Let A', B', C' be the points in the plane such that  $A'B' \le AB$ ,  $A'C' \le AC$ ,  $B'C' \le BC$ . Does there exist point M' which satisfies the inequalities  $M'A' \le MA$ ,  $M'B' \le MB$ ,  $M'C' \le MC$ ?
- 3. (a) Prove or find a counter-example: For every two complex numbers *z*, *w* the following inequality holds:

$$|z| + |w| \le |z + w| + |z - w|$$
.

(b) Prove that for all  $z_1, z_2, z_3, z_4 \in \mathbb{C}$ :

$$\sum_{k=1}^{4} |z_k| \le \sum_{1 \le i < j \le 4} |z_i + z_j|.$$

4. For every sequence  $\{a_n\}$   $(n \in \mathbb{N})$  we define the sequences  $\{\Delta a_n\}$  and  $\{\Delta^2 a_n\}$  by the following formulas:

$$\Delta a_n = a_{n+1} - a_n,$$
  
$$\Delta^2 a_n = \Delta a_{n+1} - \Delta a_n.$$

Further, for all  $n \in \mathbb{N}$  for which  $\Delta a_n^2 \neq 0$ , define

$$a_n' = a_n - \frac{\Delta a_n)^2}{\Delta^2 a_n}.$$

- (a) For which sequences  $\{a_n\}$  is the sequence  $\{\Delta^2 a_n\}$  constant?
- (b) Find all sequences  $\{a_n\}$ , for which the numbers  $a'_n$  are defined for all  $n \in \mathbb{N}$  and for which the sequence  $\{a'_n\}$  is constant.
- (c) Assume that the sequence  $\{a_n\}$  converges to a=0, and  $a_n \neq a$  for all  $n \in \mathbb{N}$  and the sequence  $\{\frac{a_{n+1}-a}{a_n-a}\}$  converges to  $\lambda \neq 1$ .
  - i. Prove that  $\lambda \in [-1, 1)$ .
  - ii. Prove that there exists  $n_0 \in \mathbb{N}$  such that for all integers  $n \ge n_0$  we have  $\Delta^2 a_n \ne 0$ .



- iii. Let  $\lambda \neq 0$ . For which  $k \in \mathbb{Z}^+$  the sequence  $\{\frac{a'_n}{a_{n+k}} \text{ is not convergent?}$
- iv. Let  $\lambda = 0$ . Prove that the sequences  $\{a'_n/a_n\}$  and  $\{a'_n/a_{n+1}\}$  converge to 0. Find an example of  $\{a_n\}$  for which the sequence  $\{a'_n/a_{n+2}\}$  has a non-zero limit.
- (d) What happens with part (c) if we remove the condition a = 0?
- 5. The functions  $f, g : [0,1] \to \mathbb{R}$  are given with the formulas

$$f(x) = \sqrt[4]{1-x}, \ g(x) = f(f(x)),$$

and c denotes any solution of x = f(x).

- (a) i. Analyze the function f(x) and draw its graph. Prove that the equation f(x) = x has the unique root c satisfying  $c \in [0.72, 0.73]$ .
  - ii. Analyze the function f'(x). Let  $M_1$  and  $M_2$  be the points of the graph of f(x) with different x coordinates. What is the positin of the arc of  $M_1M_2$  of the graph with respect to the segment  $M_1M_2$ ?
  - iii. Analyze the function g(x) and draw its graph. What is the position of that graph with respect to the line y = x? Find the tangents to the graph at points with x coordinates 0 and 1.
  - iv. Prove that every sequence  $\{a_n\}$  with the conditions  $a_1 \in (0,1)$  and  $a_{n+1} = f(a_n)$  for  $n \in \mathbb{N}$  converges. (consider the sequences  $\{a_{2n-1}\}$ ,  $\{a_{2n}\}$   $(n \in \mathbb{N})$  and teh function g(x) associated with the graph).
- (b) On the graph of the function f(x) consider the points M and M' with x coordinates x and f(x), where  $x \neq c$ .
  - i. Prove that the line MM' intersects with the line y = x at point with x coordinate

$$h(x) = x - \frac{(f(x) - x)^2}{g(x) + x - 2f(x)}.$$

- ii. Prove that if  $x \in (0,c)$  then  $h(x) \in (x,c)$ .
- iii. Analyze whether the sequence  $\{a_n\}$  satisfying  $a_1 \in (0,c)$ ,  $a_{n+1} = h(a_n)$  for  $n \in \mathbb{N}$  converges. Prove that the sequence  $\left\{\frac{a_{n+1}-c}{a_n-c}\right\}$  converges and find its limit.
- (c) Assume that the calculator approximates every number  $b \in [-2,2]$  by number  $\widetilde{b}$  having p decimal digits after the decimal point. We are performing the following sequence of operations on that calculator:
  - 1) Set a = 0.72;
  - 2) Calculate  $\delta(a) = \widetilde{f(a)} a$ ;
  - 3) If  $|\delta(a)| > 0.5 \cdot 10^{-p}$ , then calculate h(a) and go to the operation 2) using h(a) instead of a;
  - 4) If  $|\delta(a)| \le 0.5 \cdot 10^{-p}$ , finish the calculation.



- Let  $\bar{c}$  be the last of calculated values for  $\widetilde{h(a)}$ . Assuming that for each  $x \in [0.72, 0.73]$  we have  $|\widetilde{f(x)} f(x)| < \varepsilon$ , determine  $\delta(\bar{c})$ , the accuracy (depending on  $\varepsilon$ ) of the approximation of c with  $\bar{c}$ .
- (d) Assume that the sequence  $\{a_n\}$  satisfies  $a_1=0.72$  and  $a_{n+1}=f(a_n)$  for  $n\in\mathbb{N}$ . Find the smallest  $n_0\in\mathbb{N}$ , such that for every  $n\geq n_0$  we have  $|a_n-c|<10^{-6}$ .

