French Mathematical Competition 2002

Time: 5 hours.

Part 1. For a triangle *ABC*, we denote by *P* the orthogonal projection of *A* on *BC* and by *D* the reflection of *C* in *AP*.

Triangle *ABC* is said to be *pseudo-right* at *A* if $|\angle B - \angle C| = \frac{\pi}{2}$. Specially, it is pseudo-right at *A* and obtuse at *B* if $\angle B - \angle C = \frac{\pi}{2}$.

- (a) Prove that triangle *ABC* is pseudo-right at *A* if and only if triangle *ABD* is right at *A*.
- (b) Prove that $PA^2 = PB \cdot PC$ if and only if $\triangle ABC$ is right at *A* or pseudo-right at *A*.
- (c) Prove that triangle *ABC* is pseudo-right at *A* if and only if its orthocenter is symmetric to *A* with respect to *BC*.
- (d) Let *R* be the circumradius of $\triangle ABC$. Prove that PB + PC = 2R if and only $\triangle ABC$ is right at *A* or pseudo-right at *A*.
- (e) Prove that $\triangle ABC$ is pseudo-right at *A* if and only if the line *AP* is tangent to the circumcircle of $\triangle ABC$.
- (f) Let α, β, γ be the points in the complex plane corresponding to A, B, C, respectively.
 - i. Give a necessary and sufficient condition on $\frac{\alpha \beta}{\alpha \gamma} (\beta \gamma)^2$ that $\triangle ABC$ is pseudo-right at *A*.
 - ii. Set $\beta = -\gamma = e^{\frac{i\pi}{4}}$. Find the set E_1 of points *A* in the plane for which $\triangle ABC$ is pseudo-right at *A*.
 - iii. Set $\beta = -\gamma = 1$. Find the set E_2 of points *A* in the plane for which $\triangle ABC$ is pseudo-right at *A*.
 - iv. Which geometric transformation takes E_2 to E_1 ?

Part 2.

- (a) Let (a, b, c) be a triple of positive numbers. Prove that the following conditions are equivalent:
 - (i) There is a pseudo-right at *A* and obtuse at *B* triangle ABC with AB = c, BC = a, CA = b.
 - (ii) $b^2 c^2 = a\sqrt{b^2 + c^2}$.
 - (iii) There exist real numbers $\rho > 0$ and $0 < \theta < \frac{\pi}{4}$ such that $a = \rho \cos 2\theta$, $b = \rho \cos \theta$, and $c = \rho \sin \theta$.

If these conditions are satisfied, prove that θ is the measure of one of the angles of $\triangle ABC$. Can you give a geometric interpretation for ρ ?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- (b) Let $\triangle ABC$ be pseudo-right at *A* and obtuse at *B* and let its side lengths be rational. Define ρ and θ as above. In this question you can use without proof that $\cos 2\varphi = \frac{1 \tan^2 \varphi}{1 + \tan^2 \varphi}$ and $\sin 2\varphi = \frac{2 \tan \varphi}{1 + \tan^2 \varphi}$
 - i. Prove that ρ is rational and deduce that so is $\tan \frac{\theta}{2}$. Let p,q be the coprime positive integers with $\tan \frac{\theta}{2} = \frac{p}{q}$.
 - ii. Prove that 0 and show the existence of positive rational number*r*such that

$$a = r(p^4 - 6p^2q^2 + q^4), \quad b = r(q^4 - r^4), \quad c = 2pqr(p^2 + q^2).$$

- (c) Conversely, show that the formulas in 2.(b) give side lengths of a triangle that is pseudo-right at *A* and obtuse at *B*.
- (d) i. Let p and q be coprime positive integers. Find the greatest positive divisor of $p^4 6p^2q^2 + q^4$, $q^4 p^4$, $2pq(p^2 + q^2)$ in terms of parity of p and q.
 - ii. Describe all triples of integers (a, b, c) for which there is a triangle *ABC*, pseudo-right at *A* and obtuse at *B*, with AB = c, BC = a, CA = b.
- (e) Solve in N the equation $x^2(y^2 + z^2) = (y^2 z^2)^2$.
- (f) Solve in \mathbb{Q}^* the equation $x^2(y^2 + z^2) = (y^2 z^2)^2$.
- (g) Solve in N the equation $x^2(y^2 z^2)^2 = (y^2 + z^2)^3$.
- *Part 3.* Let \mathscr{H} be the curve defined by $x \ge 1$ and $y = \sqrt{x^2 1}$ and let A = (r, s) be a point on \mathscr{H} . Denote by \mathscr{A} the area of the set of points satisfying $1 \le x \le r$ and $y^2 \le x^2 1$.
 - (a) Calculate \mathscr{A} in terms of *r* and *s*. (For example, you can rotate the image by $\frac{\pi}{4}$.)
 - (b) (Based on a result by Pierre Fermat in 1658.)

Let *u* be a positive and *n* be a natural number such that $u^n = r + s$. For each integer *k*, $1 \le k \le n$, consider the right-angled trapezoid (possibly degenerated into a triangle) having a lateral side with endpoints at $(u^{k-1}, 0)$ and $(u^k, 0)$, the bases with slope -1, and the top right angle at the point on \mathscr{H} with the abscise $\frac{u^{k-1}+u^{1-k}}{2}$.

- i. Prove that the trapezoid T_k is well-defined for each k and draw a sketch.
- ii. Why can we conjecture that the sum of the areas of these trapezoids has the limit $\frac{\mathscr{A} + s^2}{2}$ when *u* approaches $+\infty$?
- iii. Prove the conjecture using another sequence of trapezoids combined with the first.
- iv. Find the value of \mathscr{A} .
- (c) Let B = (1,0) and C = (-1,0) and let A = (x,y) be a point with $x, y \ge 0$ for which $\triangle ABC$ is pseudo-rectangle at A.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com Denote by *S* the area of $\triangle ABC$ and by *S'* the area of the part of the triangle consisting of points (X, Y) with $Y^2 \leq X^2 - 1$. Determine, if it exists, the limit of *S'*/*S* when $x \to \infty$.

- *Part 4.* In the plane z = 0 in coordinate space, let \mathscr{C} be the circle with center O and radius 1 and let T and P be distinct points such that TP is tangent to \mathscr{C} at T. The line OP meets \mathscr{C} at B and C, and \mathscr{D} is the line through P perpendicular to the plane z = 0.
 - (a) i. Show that there exist two points A, A' on \mathcal{D} such that triangles ABC and A'BC are pseudo-right at A and A'. Show how to construct these points.
 - ii. Prove that the coordinates of these two points satisfy $x^2 + y^2 = z^2 + 1$.
 - (b) Let \mathcal{H} be the set of points A and A' when T and P vary.
 - i. What is the intersection of \mathcal{H} with a plane orthogonal to *x*-axis?
 - ii. What is the intersection of \mathscr{H} with a plane containing *x*-axis?
 - iii. Prove that \mathscr{H} is a union of lines and describe these lines.
 - (c) We are now interested in points of set \mathscr{H} with integer coordinates.
 - i. Let (x, y, z) be one such point. Prove that x or y is odd.
 Denote by S the set of points (x, y, z) with positive integer coordinates and with x odd such that x² + y² = z² + 1.
 - ii. Let *d* be a fixed positive integer. Prove that the set of points $(x, y, z) \in \mathscr{S}$ with gcd(x+1, y+z) is empty if *d* is odd and infinite if *d* is even.
 - iii. Let $m \ge 3$ be an integer. How many elements (x, y, z) of \mathscr{S} with x = m are there? Write down these elements for m = 3, 5, 7, 9.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com