Estonian IMO Team Selection Test 1997

Time: 4.5 hours each day.

First Day - Tartu, April 28

- 1. In a triangle ABC points A_1, B_1, C_1 are the midpoints of BC, CA, AB respectively, and A_2, B_2, C_2 are the midpoints of the altitudes from A, B, C respectively. Show that the lines A_1A_2, B_1B_2, C_1, C_2 are concurrent.
- 2. Prove that for all positive real numbers a_1, a_2, \ldots, a_n ,

$$\frac{1}{\frac{1}{1+a_1} + \frac{1}{1+a_2} + \dots + \frac{1}{1+a_n}} - \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \ge \frac{1}{n}.$$

When does equality hold?

3. There are *n* boyfriend-girlfriend pairs at a party. Initially all the girls sit at a round table. For the first dance, each boy invites one of the girls to dance with. After each dance, a boy takes the girl he danced with to her seat, and for the next dance he invites the girl next to her in the counterclockwise direction. For which values of *n* can the girls be selected in such a way that in every dance at least one boy danced with his girlfriend, assuming that there are no less than *n* dances?

Second Day - Tartu, April 29

- 4. (a) Is it possible to partition the segment [0,1] into two sets A and B and to define a continuous function f such that for every $x \in A$ f(x) is in B, and for every $x \in B$ f(x) is in A?
 - (b) The same question with [0,1] replaced by [0,1).
- 5. A quadrilateral *ABCD* is inscribed in a circle. On each of the sides *AB*, *BC*, *CD*, *DA* one erects a rectangle towards the interior of the quadrilateral, the other side of the rectangle being equal to *CD*, *DA*, *AB*, *BC*, respectively. Prove that the centers of these four rectangles are vertices of a rectangle.
- 6. It is known that for every integer n > 1 there is a prime number among the numbers n + 1, n + 2, ..., 2n 1. Determine all positive integers n with the following property: Every integer m > 1 less than n and coprime to n is prime.

