## Estonian IMO Team Selection Test 1996

Time: 4.5 hours each day.

- 1. Suppose that *x*, *y* and  $\frac{x^2 + y^2 + 6}{xy}$  are positive integers. Prove that  $\frac{x^2 + y^2 + 6}{xy}$  is a perfect cube.
- 2. Let *a*,*b*,*c* be the sides of a triangle,  $\alpha$ , $\beta$ , $\gamma$  the corresponding angles and *r* the inradius. Prove that  $a \sin \alpha + b \sin \beta + c \sin \gamma \ge 9r$ .
- 3. Find all functions  $f : \mathbb{R} \to \mathbb{R}$  which satisfy for all *x*:

(i) 
$$f(x) = -f(-x);$$
  
(ii)  $f(x+1) = f(x) + 1;$   
(iii)  $f\left(\frac{1}{x}\right) = \frac{1}{x^2}f(x)$  for  $x \neq 0.$ 

- 4. Prove that the polynomial  $P_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$  has no real zeros if *n* is even and has exactly one real zero if *n* is odd.
- 5. Let *H* be the orthocenter of an obtuse triangle *ABC* and  $A_1, B_1, C_1$  arbitrary points on the sides *BC*, *CA*, *AB*, respectively. Prove that the tangents drawn from *H* to the circles with diameters  $AA_1, BB_1, CC_1$  are equal.
- 6. Each face of a cube is divided into  $n^2$  equal squares. The vertices of the squares are called *nodes*, so each face has  $(n + 1)^2$  nodes.
  - (a) If n = 2, does there exist a closed polygonal line whose links are sides of the squares and which passes through each node exactly once?
  - (b) Prove that, for each *n*, such a polygonal line divides the surface area of the cube into two equal parts.



1