45-th Estonian Mathematical Olympiad 1998

Final Round – Tartu, March 12, 1998

Time allowed: 5 hours.

Grade 11

- 1. Let d_1 and d_2 be divisors of a positive integer *n*. Suppose that the greatest common divisor of d_1 and n/d_2 and the greatest common divisor of d_2 and n/d_1 are equal. Show that $d_1 = d_2$.
- 2. In a triangle ABC, A_1 , B_1 , C_1 are the midpoints of segments BC, CA, AB, A_2 , B_2 , C_2 are the midpoints of segments B_1C_1 , C_1A_1 , A_1B_1 , and A_3 , B_3 , C_3 are the incenters of triangles B_1AC_1 , C_1BA_1 , A_1CB_1 , respectively. Show that the lines A_2A_3 , B_2B_3 and C_2C_3 are concurrent.
- 3. A function f satisfies the conditions $f(x) \neq 0$ and f(x+2) = f(x-1)f(x+5) for all real x. Show that f(x+18) = f(x) for any real x.
- 4. A real number *a* satisfies the equality $\frac{1}{a} = a [a]$. Prove that *a* is irrational.
- 5. A circle is divided into *n* equal arcs by *n* points. Assume that, no matter how we color the *n* points in two colors, there always exists an axis of symmetry of the set of points such that any two of the *n* points which are symmetric with respect to that axis have the same color. Find all possible values of *n*.

Grade 12

- 1. Solve the equation $x^2 + 1 = \log_2(x+2) 2x$.
- 2. Find all prime numbers of the form 10101...01.
- 3. In a triangle *ABC*, the bisector of the largest angle $\angle A$ meets *BC* at point *D*. Let *E* and *F* be the feet of perpendiculars from *D* to *AC* and *AB*, respectively. Let *R* denote the ratio between the areas of triangles *DEB* and *DFC*.
 - (a) Prove that, for every real number r > 0, one can construct a triangle ABC for which R is equal to r.
 - (b) Prove that if *R* is irrational, then at least one side length of $\triangle ABC$ is irrational.
 - (c) Give an example of a triangle *ABC* with exactly two sides of irrational length, but with rational *R*.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- 4. Find all integers n > 2 for which (2n)! = (n-2)!n!(n+2)!.
- 5. From an $n \times n$ square divided into n^2 unit squares, one corner unit square is cut off. Find all positive integers *n* for which it is possible to tile the remaining part of the square with *L*-trominos.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com